抽象作为实际包装场景中的抓地力行为很容易受到各种干扰的影响,视觉抓握预测系统遭受了稳健性和检测准确性低的差。在这项研究中,已经提出了一个以线性全球注意机制为基础的智能机器人抓手框架(RTNET),以实现在实际包装工厂场景中实现高度稳健的机器人掌握的预测。首先,为了减少计算资源,在机器人抓握过程中已经开发了一种优化的线性注意机制。然后,已对本地窗口转换算法进行了调整,以收集功能信息,然后通过向上和下采样的层次设计集成全局功能。为了进一步改善开发的框架,可以通过减轻噪声干扰的能力,建立了一种自称的特征体系结构,以增强其强大的学习能力。此外,已经生成了真正的操作环境中的握把数据集(RealCornell),以实现对真实抓地力的过渡。为了评估所提出的模型的性能,在Cornell数据集,实核数据集和实际场景上对其掌握的预测进行了实验检查。结果表明,RTNET在Cornell数据集上的最大准确度为98.31%,在复杂的RealCornell数据集上达到了93.87%。在考虑实际包装情况下,所提出的模型还证明了在抓住检测方面的准确性和鲁棒性水平很高。综上所述,RTNET对包装行业的机器人握把的高级部署和实施提供了宝贵的见解。
强化学习(RL)在机器学习算法的领域中脱颖而出,因为其独特的方法涉及代理与环境相互作用的代理,以发现最大程度地提高预期累积奖励的政策。这与监督的学习形成对比,后者依赖于预定的数据标签对来进行更正。在RL中,反馈信号仅来自环境中定义的奖励功能,这使得此奖励功能的设计至关重要。设计较差的奖励功能可以阻碍学习过程,并导致一项预测不良行动的政策[3],强调了RL仔细奖励功能工程的重要性。在为环境设计奖励功能时,尤其是对于机器人操纵任务时,常见的方法是将对象和目标之间的总距离或额外的奖励使用。例如,fetch [29]中的任务使用抓地力和目标位置之间的距离作为奖励,而Metaworld [44]中的拾取位置任务使用抓地力,对象和目标位置之间的距离,并带有额外的奖励,表明对象是否由抓手抓住。但是,这种奖励功能设计倾向于评估当前状态而不是动作本身。一种更强大的方法涉及基于动作的奖励指标,这些指标可以评估行动质量,考虑到诸如动作效率,路径优化和动态相互作用之类的因素。在机器人操纵任务中,要实现目标状态,必须首先实现一系列先决条件。仅在物体和目标位置之间的距离时设计奖励功能通常会错过一些先决条件。
spirobs:对数螺旋形机器人,用于遍及尺度的多功能抓握Zhanchi Wang,1 Nikolaos M. Freris,1,3, *和XI Wei 2,** 1计算机科学技术学院,中国科学技术大学,中国,Hefei,Anhui,Anhui,Prc,Prc,230026。2中国科学技术大学化学与材料科学学院,Hefei,Anhui,Prc,230026 3 Lead Contact *通信:nfr@ustc.edu.cn。 **通信:wxi@ustc.edu.cn。 总结实现具有生物学上可比灵活性和多功能性的软操作器通常需要仔细选择材料和驱动以及其结构,感知和控制的细心设计。 在这里,我们报告了一类新的软机器人(螺纹),该机器人在形态上复制了在自然附属物中观察到的对数螺旋模式(例如,章鱼臂,大象躯干等)。 这允许在不同尺度和快速廉价的制造过程中建立共同的设计原理。 我们进一步提出了一个受章鱼启发的抓斗策略,可以自动适应目标对象的大小和形状。 我们说明了螺旋罗的敏捷性,以及抓紧大小的物体的能力,其大小多于两个以上的数量级,并且自重的260倍。 我们通过另外三种变体演示可伸缩性:微型抓手(MM),一个长时间的操纵器和一系列可以纠结各种物体的螺旋体。 这些附件能够具有显着的运动复杂性,并提供各种重要功能,例如猎物捕获,运动,操纵和防御。2中国科学技术大学化学与材料科学学院,Hefei,Anhui,Prc,230026 3 Lead Contact *通信:nfr@ustc.edu.cn。**通信:wxi@ustc.edu.cn。总结实现具有生物学上可比灵活性和多功能性的软操作器通常需要仔细选择材料和驱动以及其结构,感知和控制的细心设计。在这里,我们报告了一类新的软机器人(螺纹),该机器人在形态上复制了在自然附属物中观察到的对数螺旋模式(例如,章鱼臂,大象躯干等)。这允许在不同尺度和快速廉价的制造过程中建立共同的设计原理。我们进一步提出了一个受章鱼启发的抓斗策略,可以自动适应目标对象的大小和形状。我们说明了螺旋罗的敏捷性,以及抓紧大小的物体的能力,其大小多于两个以上的数量级,并且自重的260倍。我们通过另外三种变体演示可伸缩性:微型抓手(MM),一个长时间的操纵器和一系列可以纠结各种物体的螺旋体。这些附件能够具有显着的运动复杂性,并提供各种重要功能,例如猎物捕获,运动,操纵和防御。关键字柔软的机器人,对数螺旋,多尺度设计,软机器人握把介绍某些动物具有细长,灵活的附属物,范围从海马长度的几厘米和Chameleons的前尾尾巴1,2到超过一米的章鱼臂和大量的off臂和大头臂和大头脑trunks trunk trunks trunks 3,4。通过利用软材料或合规机制5-7,这是设计和构建柔软连续操作器的灵感来源。尽管机器人已经成功地重现了此类机器人系统中的柔性变形,并且在处理脆弱或不规则形状的物体8,安全的人类机器人互动任务9-11,医疗应用12,13等方面表现出了巨大潜力,但生物学示例在脱氧和敏捷性方面仍然超过了特大工程。例如,大象树干可以包裹直径为3厘米的胡萝卜,而它也可以抓住和堆叠300千克的树桩,直径超过直径14。章鱼手臂可以伸出手,并在次秒时间尺度上捕获鱼。
摘要:触觉手和握手,旨在实现熟练的对象操纵,对于与环境的高精度互动至关重要。这些技术在诸如微创手术等领域尤其重要,它们可以增强手术精度和触觉反馈:在高级假肢的发展中,为用户提供了改善功能和更自然的触觉,并且在工业自动化和制造业内,它们为更有效,安全和灵活的生产过程贡献了更有效,安全和灵活的生产过程。本文介绍了两指机器人手的开发,该手的开发采用了简单而精确的策略来操纵物体而不会损害或丢弃它们。我们的创新方法融合了对力敏感的电阻器(FSR)传感器,其平均电流是伺服电机的平均电流,以提高抓握的速度和准确性。因此,我们旨在创建一种比抓手更灵巧的抓握机制,而不是机器人手。为了实现这一目标,我们设计了一只两指机器人手,每只手指上都有两个自由度。将FSR集成到每个指尖中,以实现对象分类和初始接触的检测。随后,连续监测伺服电流以实现阻抗控制并保持对物体的掌握在各种刚度中。在初始接触时提出的手部对象的刚度分类,并通过融合FSR和运动电流来施加准确的力。使用耶鲁-CMU – Berkeley(YCB)对象进行了实验测试,包括一个泡沫球,一个空的苏打罐,苹果,苹果,玻璃杯,塑料杯和一个小牛奶包装。机器人的手成功地从桌子上捡起了这些物体,并将它们坐下而不会造成任何损坏或中途丢弃。我们的结果代表着具有先进物体感知和操纵能力的触觉机器人手的重要一步。
在1968年,计算机图形的教父之一伊万·萨瑟兰(Ivan Sutherland)展示了世界上的首次头部安装显示(HMD)给世界的沉浸式媒体系统:一种沉浸式虚拟现实(IVR)耳机,使用户能够交互式地注视到三个尺寸(3D)虚拟环境(SUTHATERAINS,1968年),1968年; 1968年;萨瑟兰(Sutherland)在“达马克尔(Damocles)之剑”(Damocles of Damocles)之前,描述了他对系统的灵感,这成为沉浸式媒体最具影响力的文章之一:“当然,最终的展示当然将是计算机可以控制物质存在的房间。在这样的房间里展示的椅子足以坐在。在这样的房间里展示的手抓手会得到填充,在这样的房间里展示的子弹将是致命的。通过适当的编程,这样的展示实际上可能是爱丽丝走到的仙境”(Sutherland,1965)。病态,最终显示的这种愿景询问是否可以创建这样的计算熟练媒介,以使现实本身可以通过物理响应模拟。萨瑟兰州的“达马克尔之剑”帮助引发了一个新的研究时代,旨在在竞赛中为学术界和工业界回答这个问题,以在虚拟世界内建立最沉浸式的展示(Costello,1997; Steinicke,2016)。但是,由于当时的硬件限制和成本,这种趋势是短暂的(Costello,1997)。在2019年,出售了700万个商业HMD,到2023年,销售额预计每年将达到3000万(Statista,2020)。过去十年中,这一领域的增长爆炸性增长,计算能力的提高和数字系统的效果有效地降低了技术制造,消费者市场,所需技能和组织需求的障碍(Westwood,2002年)。这种大众消费者的采用部分是由于硬件成本下降和可用性的相应提高所致。这些商业系统提供了一种传达6-DOF信息(位置和轮换)的方法,同时也从用户行为中学习
摘要一种新型技术,它克服了手动劳动的困难,以提高大规模食品存储设施的生产率。特别是强调米袋,这种创造性的方法旨在无缝取代人类互动,例如采摘,存储,移动和监视食物袋。该系统采用一种集成方法,其中包括精密握把,剪刀升降机,笛卡尔机器人,自动驾驶指导车辆(AGV)和先进的人工智能驱动控制系统。尤其是,称为同时定位和映射(SLAM)的技术在保证系统的平稳运行中起着至关重要的作用。虽然笛卡尔机器人精确地执行了复杂的作业,但来自AGV的自主移动性可以在存储空间内有效而准确地移动。剪刀升降机增加了系统在管理不同存储布置方面的灵活性。米饭可以仔细地处理,并且可以通过精确的抓手来控制。人工智能算法由总体控制系统采用,以促进各种成分的平稳协调。结合了这些尖端技术,该系统不仅简化了操作,而且还大大降低了对手动劳动的需求,为管理食品存储的更有效,更尖端的方法打开了大门。关键字:自主移动性,大满贯,精密抓地力,剪刀升降机,笛卡尔机器人,AGV和简化操作。在印度的研究中,水稻行业对于维持经济稳定和粮食安全至关重要。在这种情况下,有效的米袋处理至关重要,因为它直接影响分布和供应链。此摘要涵盖了用于稻袋堆叠和堆叠的自动托盘制度系统的创建和应用。利用尖端的机器人技术和自动化技术,该系统优化了处理程序,提高效率并降低了对人工劳动的依赖。印度的大多数稻米厂和存储设施目前都手工处理米袋,这是一项劳动力的运营。除了降低运营效率外,这种劳动密集型方法还
抽象目的:使用脑部计算机界面(BCI)控制的神经假体来证明自然主义运动控制速度,协调的掌握和从训练到新物体的延长。设计:与前臂功能电刺激(FES)集成的心脏内BCI的I期试验。报告的数据跨越了植入后的第137天至1478年。设置:三级护理门诊康复中心。参与者:一名27岁的C5级A类(在美国脊柱损伤协会损伤量表上)创伤性脊髓损伤干预措施:在其左侧(主要)运动皮层中植入阵列后,接受了BCI-FES训练的参与者,以控制动态,辅助的,具有辅助的固定的固定的固定固定的固定固定剂,Wrist,Wrist和手动运动。主要结果措施:对ARM运动能力的标准化测试(对强度,敏感性和预性评估评估评估[GRASSP],行动研究ARM测试[ARAT],GRASP和释放测试[GRT],Box and Block测试),Grip肌度测试和功能活性测量的功能[CUE-TIPLIPE-STROTIA QUIFIA],QUADIA QUADIA QUADIA QUADIA QUADIA,有或没有BCI-FES的脊髓独立测量自我报告[SCIM-SR])。结果:随着BCI-FES的分数,分数从基线上提高了:握力(2.9 kg); Arat杯子,气缸,球,酒吧和块; grt罐,分叉,钉,重量和胶带;草p强度和预性(从瓶中倒出的盖子,转移钉子);以及提示曲手和手工技能。QIF-SFAND SICIM-SR饮食,美容和厕所活动有望改善BCI-FES的家庭使用。Pincer抓地力和移动性不受影响。BCI-FES抓地力技能使参与者能够玩改编的“战舰”游戏并操纵家庭对象。结论:使用BCI-FES,参与者执行了熟练和协调的抓手,并在上肢功能的测试中取得了显着的临床收益。练习从培训对象到家庭用品和休闲活动的练习。Palmar,横向和
16-848 2024年4月10日的参考列表开始,我们开始谈论接触模型 - 尤其是硬手指和软手指与库仑摩擦的接触。这些在GRASP分析文献中非常受欢迎,但它们是点接触模型 - 他们假设机器人在一个点与对象进行接触。我们不仅知道,对于人的手接触经常发生在很大的区域上,而且单点接触也会在预测的接触力中造成不连续性,因为在边缘跨越边缘的接触幻灯片,而实际上,这种力可能会差异很顺利。可以通过有限元技术很好地模拟区域接触。但是,这些技术仍然很慢,并且不广泛用于GRASP优化和计划。存在多个基于区域的联系模型。我们快速研究了此博客中描述的其中一种 - 水力弹性联系人:https://medium.com/toyotaresearch/rethinking-contact-simulation-for-robot-manipulation--434a56b5ec88,我们随后进行了一些数学来抓取抓手和jacobian,包括jacobian。我使用了本文的后半部分进行参考。本文还包含一个质量指标 - 考虑到机器人手的运动学结构(在这种情况下为人类手),以及需要完成的一组特定任务。li,Ying,Jiaxin L. Fu和Nancy S. Pollard。“使用形状匹配和基于任务的修剪的数据驱动的掌握合成。”IEEE可视化交易和计算机图形13,no。“抓握”。法拉利,卡洛和约翰·坎尼。2290-2295。4(2007):732-747。 https://ieeexplore.ieee.org/abstract/document/4293017您可以在此条目中找到有关关键术语,形成闭合,抓取矩阵和其他基本属性等关键术语的非常清晰的讨论,来自Springer of Robotics:Prattichizzo,Domenico,Domenico,和Jeffrey C. Trinke。 机器人技术手册(2016):955-988。 https://link.springer.com/chapter/10.1007/978-3-319-32552-1_38我们随后谈论了更多关于使掌握好的的事情 - 很多事情都可以介入! 最引人注目,最常用的质量指标之一是法拉利和精美的掌握质量指标(扳手太空球)。 “计划最佳掌握”。 机器人技术和自动化,1992年。 诉讼。,1992年IEEE国际会议,第 IEEE,1992。https://people.eecs.berkeley.edu/~jfc/papers/92/fcicra92.pdf4(2007):732-747。 https://ieeexplore.ieee.org/abstract/document/4293017您可以在此条目中找到有关关键术语,形成闭合,抓取矩阵和其他基本属性等关键术语的非常清晰的讨论,来自Springer of Robotics:Prattichizzo,Domenico,Domenico,和Jeffrey C. Trinke。机器人技术手册(2016):955-988。 https://link.springer.com/chapter/10.1007/978-3-319-32552-1_38我们随后谈论了更多关于使掌握好的的事情 - 很多事情都可以介入!最引人注目,最常用的质量指标之一是法拉利和精美的掌握质量指标(扳手太空球)。“计划最佳掌握”。机器人技术和自动化,1992年。诉讼。,1992年IEEE国际会议,第IEEE,1992。https://people.eecs.berkeley.edu/~jfc/papers/92/fcicra92.pdf
指导出版物1。“针对目标投掷的最终效力者的识别和学习控制” - Hasith Venkata Sai Pasala,Nagamanikandan Govindan和Samarth Brahmbhatt,IEEE Robotics and Automation and Automation Fetters,第1卷。9,不。11,pp。9558-9564,2024年11月2。“ Imagine2Servo: Intelligent Visual Servoing with Diffusion-Driven Goal Generation for Robotic Tasks ” - Pranjali Pathre, Gunjan Gupta, M. Nomaan Qureshi, Mandyam Brunda, Samarth Brahmbhatt , and K. Madhava Krishna, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024 3.“ OpenBot-Fleet:与真实机器人进行集体学习的系统” - MatthiasMéuller,Samarth Brahmbhatt,Ankur Deka,Ankur Deka,Quentin Leboutet,David Hafner和Vladlen Koltun和Vladlen Koltun,国际机器人和自动化(ICRA)2024 4。“偷偷摸摸的人:偷偷摸摸的声学本地化” - 孟尤杨,帕特里克·格雷迪,萨玛斯·布拉姆布哈特,Arun Balajee Vasudevan,Charles C. Kemp,Charles C. Kemp和James Hays,Inter-National-National-National-National-National-National-National-inter-National-inter-National-national-inter-National-national-of Robotics and Automation and Automation(ICRA)20224 5。“基于触觉的对象插入政策的零射击” - 萨玛斯·布拉姆·伯特(Samarth Brahmbhatt),安卡尔·德卡(Ankur Deka),安德鲁·斯皮尔伯格(Andrew Spielberg)和马蒂亚斯·米勒(MatthiasMéuller),国际机器人和自动化会议(ICRA)2023 6。“压力之间:估算单个RGB图像的手压力” - 帕特里克·格雷迪,昌昌唐,萨玛斯·布拉姆·Bhatt,克里斯托弗·D·特里克,陈德·沃恩,詹姆斯·海斯,詹姆斯·海斯和查尔斯·肯普,欧洲计算机视觉会议(ECCV)2022(ORAL)7。“对软机器人抓手的视觉压力估计和控制” - 帕特里克·格雷迪,杰里米·A·柯林斯,萨玛斯·布拉姆·布拉特,克里斯托弗·D·特·特维格,昌昌唐,詹姆斯·海斯和查尔斯·C·坎普,IEEE/RSJ IEEE/RSJ国际智能机器人与系统(IROS)(IROS)2022 8。“联系人:优化联系以提高抓地力” - 帕特里克·格雷迪,郑昌,明·沃,克里斯托弗·D。“联系人:带有物体接触和手动姿势的grasps的数据集” - 萨马斯·布拉姆·汉特(Samarth Brahmbhatt),昌昌唐(Chengcheng Tang),克里斯托弗·D·特克格(Christopher D. Twigg),查尔斯·C·肯普(Charles C.“走向无标记的抓握捕获” -Samarth Brahmbhatt,Charles C. Kemp和James Hays,AR/VR计算机视觉的第三次研讨会,CVPR 2019 11.“ ContactGrasp:来自接触的功能性多手指掌握综合” - Samarth Brahmbhatt,Ankur Handa,James Hays和Dieter Fox,IEEE/RSJ国际智能机器人和系统国际会议(IROS)2019