这项研究的目的是阐明戴咬齿轮对手球运动员身体表现的影响,具体取决于他们的个人咬合接触状态。参与者是15位精英级女性手球运动员(25。7±3。2年)。咬合接触状态并将其分为两组;稳定的小组和不稳定的小组。身体健身测试由8个项目组成,评估敏捷性,爆炸能力,肌肉力量,跳跃能力和灵活性,即步骤50,启发性,三锥钻,三锥钻,药丸勺投掷,垂直跳跃,背部肌肉力量,肌肉力量,扩散腿部,腿部伸开腿和容易发生上身。这些测试是在两个条件下进行的:不戴和佩戴定制的哨兵。使用分裂图设计分析了每个测试的分数,并以咬合平衡为因素。在稳定组中,任何测试的得分都不会受到戴口罩的影响。在不稳定的群体中,穿着咬牙的小组可显着提高测试成绩,除了腿部张开和容易发生的上身拱形。这项研究的结果表明,戴咬齿轮对手球运动员身体能力的影响受到玩家的咬合接触状态的影响。在咬合接触差的运动员中,戴上咬人通过咬合咬合对身体表现产生了积极影响,主要是在敏捷性,爆炸能力,肌肉力量和跳跃能力方面产生了积极影响。但是,对于已经有良好咬合接触的运动员而言,戴上弹丸不会影响他们的身体表现。
图 2-1 哈祖斯飓风模型方法示意图..................................................................................................................... 2-3 图 2-2 哈祖斯飓风分析层次..................................................................................................................................... 2-6 图 4-1 平均风廓线......................................................................................................................................................... 4-4 图 4-2 所有 MBL 情况下 RMW 附近的水滴的平均和拟合对数廓线............................................................. 4-6 图 4-3 RMW 附近 10 米处海面阻力系数随平均风速的变化............................................................. 4-7 图 4-4 RMW 外情况的平均风廓线和拟合对数廓线............................................................................................. 4-8 图 4-5 RMW 外情况 10 米处海面阻力系数随平均风速的变化......................................................................... 4-9 图 4-6 10 – 30公里和 30 – 60 公里 RMW 情况..................................................................................................................................................... 4-10 图 4-7 回归模型、Kepert(2001)模型与观测到的边界层高度的比较......................................................................................................................... 4-13 图 4-8 10 至 30 公里和 30 至 60 公里 RMW 情况下 RMW 附近观测到的和建模的速度剖面......................................................................................................... 4-14 图 4-9 在 RMW 附近采集的投掷探空仪数据的建模风速与高度的平均误差......................................................................................... 4-14 图 4-10 RMW 附近 10 米处平均风速与边界层顶部平均风速的建模与观测比值比较......................................................................................................................... 4-16 图 4-11 投掷探空仪数据的建模风速与高度的平均误差在 RMW 区域外拍摄的照片 ............................................................................................................................................. 4-16 图 4-12 完全过渡的陆地平均风速(z 0 =0.03 米)与水面平均风速(z 0 =0.0013 米)与边界层高度的比值 ............................................................................. 4-18 图 4-13 ESDU 和修改后的 ESDU 风速过渡函数 ............................................................................................. 4-18 图 4-14 使用平板模型计算的朝向页面顶部移动的飓风的喷射强度 ............................................................................................................................................. 4-20 图 4-15 显示模拟和观测到的风速、表面气压和风向的示例图......................................................................................................................................... 4-22 图 4-16 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-23 图 4-17 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-24 图 4-18 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(结束)......................................................................................................................... 4-26 图 4-20 比较图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大地面峰值阵风风速示例比较 ............................................................................................................. 4-29 图 4-22 已消除的剖面示例 ......................................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例 ......................................................................................................... 4-374-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(完结)......................................................................................................................................... 4-26 图 4-20 15 个登陆飓风的模拟和观测到的最大峰值阵风风速比较......................................................................................................... 4-28 图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大表面峰值阵风风速的示例比较............................................................................. 4-29 图 4-22 已消除剖面的示例......................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例......................................................................................................... 4-374-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(完结)......................................................................................................................................... 4-26 图 4-20 15 个登陆飓风的模拟和观测到的最大峰值阵风风速比较......................................................................................................... 4-28 图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大表面峰值阵风风速的示例比较............................................................................. 4-29 图 4-22 已消除剖面的示例......................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例......................................................................................................... 4-37
迈克尔·J·阿特上尉……(当时为中士)(陆军序列号),美国陆军步兵,第 19 装甲步兵营 A 连成员,1945 年 1 月 13 日至 20 日在法国哈滕附近的战斗中表现出非凡的英雄主义。当他的营被迫撤退,掩护部队被敌人切断时,他在敌人猛烈的炮火、迫击炮和小型武器火力下从一个小组转移到另一个小组,组织和鼓舞部队,以他积极和无畏的领导能力挽救了掩护部队。当营再次出击时,阿特上尉操作了一挺机枪,此外,他还向敌方阵地投掷了火炮,并阻止了德军的单线进攻。然后,他打后卫战,使一支被包围且人数处于劣势的连队从敌人的包围圈中撤退。艾特上尉的英雄主义和无所畏惧的纪律为他自己赢得了极大的荣誉,也符合军队的最高传统。Il.. 杰出服务奖章—根据总统指示,根据 1918 年 7 月批准的国会法案(Bul. 43, WD, 1018)的规定,授予下列军官因在所示期间在重大责任岗位上做出异常功绩和杰出服务而获得杰出服务奖章:美国陆军总参谋部(步兵)中校 .Tnhn W, BDJ£i1lU.(当时为上校)。 1944 年 11 月至 1948 年 2 月。(1945 年 WD,第 88 号将军令第 1 段第 VIII 节,关于授予中校鲍文(当时的上校)功绩勋章(第一枚 Oak-Lenf Olnster 奖章),以表彰其在 1044 年 11 月 1 日至 1048 年 8 月期间的服务,现已撤销。)
鱼雷和水雷 1941 年 12 月 22 日,战时内阁会议决定在澳大利亚制造鱼雷,这项决定使该国的精密工程领域承担了一项极其艰巨的任务;由于鱼雷在现代军备中占据重要地位,这项任务具有极其重要的潜在意义。海权是英国在 19 世纪称霸世界强国的基石,因此鱼雷的研发本质上是英国的成就也就不足为奇了,尽管它最初并不是英国的发明。英国在鱼雷应用方面早期的领先地位很大程度上归功于指挥官(后来的海军上将)费舍尔的热情,但其他大国不久也进入了该领域。这种武器的巨大潜力首次显现于 1914 年至 1918 年的战争中,当时德国利用 U 型潜艇和鱼雷对商船造成了巨大损失,几乎让英国屈服。第一次世界大战后的二十年间,随着飞机投掷鱼雷方法的发展,鱼雷的破坏力进一步增强,不需要太多洞察力就能预测鱼雷在未来战争中的作用。2 英国的鱼雷制造主要由一家私人公司怀特黑德鱼雷公司(Whitehead Torpedo Company)和位于苏格兰格里诺克的海军部负责。 1941 年 7 月,海军部担心英国的鱼雷生产可能会因轰炸或入侵而受阻,甚至完全停止,因此开始研究为这种紧急情况提供替代中心的方法。英国的制造业已尽可能分散,但尚未在英国以外建立中心。1941 年 7 月 15 日,海军部在给澳大利亚海军委员会的一封信中表示:“如果鱼雷制造商能够在英国制造鱼雷,那将是一个相当大的优势。”
摘要 — 本文讨论了一个简单的室内游戏,玩家必须将球穿过固定在可变云台平台上的环。这项研究的动机是通过机械臂学习有经验的玩家的游戏动作,以便随后由机器人训练年幼的儿童(受训者)。机器人学习玩家在不同游戏状态下的游戏动作,这些动作由环的云台方向及其相对于玩家的径向距离决定。有经验的玩家/专家的动作由六个参数定义:玩家右臂的三个连接坐标和给定投掷中球的三维速度。这里采用强化学习来调整概率学习自动化的状态动作概率矩阵,该矩阵基于玩家因成功(或失败)将球穿过给定环而获得的奖励(或惩罚)分数。混合脑机接口 (BCI) 用于检测玩家游戏动作中的失败,通过在运动执行后自然唤醒错误相关电位 (ErrP) 信号,由运动想象指示。在运动想象后没有 (存在) ErrP 的情况下,系统认为玩家的尝试是成功 (失败),从而根据各个游戏实例的成功/失败调整学习自动机中的概率。在状态动作概率矩阵收敛后,将其用于规划,其中选择与自动机中给定状态下最高概率相对应的动作进行执行。机器人可以使用具有收敛概率分数的学习自动机自主地训练儿童游戏。进行的实验证实,当环放置在距离机器人 4 英尺的中等距离时,机器人手臂在运动执行阶段的成功率非常高 (超过 90%)。索引词——脑机接口、强化学习、游戏、事件相关电位、事件相关去同步/同步。
抽象背景。体育结果预测分析基于博彩应用结果,尚未受到摩洛哥有关组织的学术研究。目标。本研究旨在使用具有弹性净算法的机器学习回归模型来预测足球国家联盟的排名,我们在其中确定了重要特征的预测重量。方法。自2009/2010赛季以来的8个常规球队的历史分数数据集被手动填充并分为9列:赛季,球队,得分,进球差(+/-),比赛(M),比赛赢得(W),比赛(w),匹配(D)(D),比赛丢失(L),进球(F)和(F)和(F)和(a)。然后将其预处理成分类数据,分类哈希和数值。结果。机器学习分析导致R 2得分= 0.999,NRMSE = 0.001和Spearman相关性= 0.997。然而,与2021/2022季节的实际结果相比,预测的排名从8个起到了约5个。结论。与回归分析结果相比,实际结果的排名预测已准确地占75%。通过包括其他参数,这证明数据质量需要更精确。关键字:足球排名,机器学习,回归,预测。引言足球成绩和结果预测一直是Tips和博彩市场专家(1)的重点中心,并且已成为教练,体育科学家,分析师和表现专家的更重要的感兴趣中心;设计最佳实践,训练和竞争任务(2-4)。因此,研究人员已经开始应用数学公式和统计数据(5)来预测结果,而机器学习和智能算法已被普遍使用(6),并将足球结果视为一个分类问题,将一个班级的分类问题(赢得,输掉或抽奖)作为一个类别。但其他研究人员认为该问题是基于数值分析和值的回归模型中预测的数值价值,以预测特定的距离(7)或运动员在跳跃和投掷方面所实现的表现。运动结果预测问题在于要收集的数据,以及考虑对结果的影响的输入功能。一些研究人员专注于团队的历史数据,例如球队的要点,进球差,比赛,得分,丢失,进球,进球和对抗(8)的进球; (9)在最近几周和联盟中使用更多的预测标准作为团队的条件,而质量
他原本来自明尼苏达州的一个奶牛场,并于 2004 年加入海军。在佛罗里达州彭萨科拉完成“A”学校的学习后,PRCS Moen 到弗吉尼亚州的 NAS Oceana Sea 作战支队报到。2008 年 3 月,他就读于佐治亚州本宁堡的美国陆军空降学校,随后又进入弗吉尼亚州格雷格-亚当斯堡的 SOPR 学校学习。完成两门课程后,他被分配到海军特种作战大队第二后勤和支援部队工作四年。在此期间,PRCS Moen 参加了军事自由落体、静态线跳伞长、直升机绳索悬挂技术/投掷 (HRST/C) 大师和联合空投督察学校。他还获得了远征作战专家和联邦航空管理局 (FAA) 高级降落伞装配工的资格。2011 年,PRCS Moen 与海豹突击队第十小队一起部署,支援持久自由行动。部署结束后,他调至弗吉尼亚州小溪高级训练指挥支队。2012 年至 2015 年,他担任教员,为东海岸的海豹突击队教授静态线跳伞长和 HRST/C 长,同时获得了大师级训练专家称号。2015 年 2 月,PRCS Moen 被分配到夏威夷珍珠城海军特种作战大队第三后勤和支援部队,在那里他担任 FAA 索具大师、海军跳伞大师 (NEC 9554)、海军特种作战作战支援 (NEC 5307) 和海军特种作战大队第三内的空中作战训练师/考官。2018 年 5 月,PRCS Moen 报告为田纳西州米灵顿的 PERS 4010 特别项目细节制定者。他接下来的任务是登上日本横须贺的 CVN 76,在那里他三次部署在飞机中级维护部门任职。 2023 年 12 月,他加入海军安全司令部,并将驻扎在这里至 2027 年 1 月。
赖特委员对 SECY-24-0083 的评论:根据 2024 年 ADVANCE 法案第 501(a) 款更新使命声明的选项 在与同事交谈后,我提议考虑以下核管理委员会新使命声明的措辞。NRC 通过高效可靠的许可、监督和监管,确保民用核能技术和放射性物质的安全使用和部署,从而保护公众健康和安全,促进国家共同防御和安全,造福社会和环境。国会通过 ADVANCE 法案 1 向 NRC 发出了一个明确的信息,即现在是成为现代风险知情监管机构的时候了。这个国家的核能和放射性物质的未来正处于十字路口,NRC 应该将自己定位为未来解决方案的一部分。国会已指示 NRC 成为核技术的推动者,同时坚持《原子能法》(AEA)中规定的核心原则。 2 NRC 的核心使命是保护美国人民的健康和安全免受放射性危害。NRC 是一个安全监管机构,其职责是保护国家健康和安全。这是我们的北极星,我们不能忽视这一点。这就是为什么我的使命宣言提案以“保护公众健康和安全”为首。然而,这并不意味着 NRC 可以因追求绝对安全而变得麻木不仁。AEA 第 2011 条规定:“原子能的开发、使用和控制应以对公共福利做出最大贡献为目标。” 3 根据 1974 年《能源重组法》成立 NRC 时,这一标准没有改变。 4 NRC 可以而且必须做好准备,确保核能和放射性物质的安全使用,为国家提供最大的支持。正如我过去所说,合理保证充分保护公众健康和安全是我们的打击区。但就像裁判对投掷在好球区内的任何球判为好球一样,一旦确定已实现合理保证,NRC 必须准备做出安全裁定,不多也不少。《先进核能法案》第 501 条指示委员会更新使命宣言“以包括以高效的方式对放射性物质和核能的民用进行许可和监管……”5 委员会于 1991 年通过了良好监管原则,概述了对独立、开放、高效、清晰和可靠的关注。6 效率原则指出,“美国纳税人、纳税消费者和被许可人都有权获得监管的最佳管理和行政管理
经总统批准,1918 年 7 月 12 日国会通过的《荣誉勋章》(经 1918 年 3 月 3 日法案、1918 年 7 月 9 日法案和 1919 年 7 月 22 日法案修订),授予在生命危险之上表现出勇敢和英勇的荣誉勋章,由部门或个人以国会的名义授予:Speciakt Four Raymond R. I. T., I. G., 'C11i1ell Statrs Anny, "lio, on '2 }Iay l!, d1ik 5,ervi11g tt.sa步枪手和连队,第 3n1 营,1977 年。在越南共和国区,他亲自在一次战斗巡逻中杀死了敌人。这里早些时候曾发生过伏击。:::;专家 lVN'。它很小,只是从敌方掩体中发出了更激烈的攻击性武器射击。ldier Jc,ape,1 到 th.,. :np of n c1ikࠌ, 到 as 0 ;anlt positio11。 _\nne<1 ,_.ith : 1 , 步枪 :uHl ,c,n,1·,ll .ࠍTe11:1c1es, k: :1:"l Lis eornrade expo:oe,l tlw111ieht•,; :c i1:t,:be tit·e from the lnn1kers a:: t'.1'·ࠎ- c·11:u·g'-'cl 最近的。专家 1Vl'ig ht 冲向掩体,投掷手榴弹,杀死了里面的人。然后,枪手跑向掩体。\·o ,ol(liers)u;.d1 ah:1il oi: ffre :o th,, S('C'J,lll 。\同时他的敌人用手与他搏斗:ࠏ madiine /:Hi:. 专家 lVri ui,c' 负责杀死 l'll<'li'Y rii!c•rn,t,1 ,,-itli a grrwH1e。Tlw t ,1·,, .ࠑ:llch,1· workl'c1 thvil' iYay thr,rn;.d1 lc'm::inin'.!.· b11nkers,敲门 nnt furn·(Jf ti1en1。Tln·ou1 .. d101;t 他们愤怒的 a,,s:rnl,, ࠒppࠓ·i:11ist 1r1·ir;ht aml hi,: emtll',lllP !t:1'1 Leen :tlnio"t cm1ti11u,:1dy expo"l'd to tii,c•rbf:' 狙击轮胎从 tlw trerlirn:作为 t1ic' 敌人 1lrs1w1·,11,,]y songh! 10 点,他们开始进攻。在防御系统的支持下,士兵们进入树林,迫使狙击手撤退,立即给予攻击,并将敌人从友军部队中驱逐出去,这样他们就可以在没有进一步伤亡的情况下穿过开阔地。当弹药耗尽时,Pxlinuste,1 专家立即返回他的部队协助撤离敌人的部队。这次单人进攻将敌军的一个排从 n 赶出。保持阵地,对抗敌人的大量伤亡,避免更多的冲突。专家们的“外在英雄主义,共同战斗精神”令人难忘。
Shashank Sharma和Vikas Mishra抽象的固体废物供应增加,因为人口增加和高水平的生活水平。现在可以理解,如果以有效的方式产生废物,它将最终变得无法兑现。因此,管理固体废物已变得至关重要。来自市政当局材料的固体废物对环境产生负面影响。任何不液体或气体的东西都被认为是固体废物。所有类型的废物包括污水污泥,市政,工业,农业和机械废物。另一种可行的废物是固体废物。废料清单似乎包括病理废物,工业废物,农业废物thrash和投掷废物。因为它含有湿度,因此当肉类,水果和蔬菜被加工以进行能量时,相关垃圾是作为固体废物产生的。当前研究项目的目的是用废料产生电力。随之而来的是,减少碳排放是该项目的最大目标。电池用于存储和运行由塑料,橡胶,垃圾和废物等材料制成的电路。通过使用LED灯泡过滤器来减少能源产生的污染,整个工作被证明是有用的。因此,在这个项目中,我们成功地展示了如何从废料中发电并将其存储在可充电电池中。为了遵守2016年固体废物管理规则的排放限制,污染控制设备用于管理MSW的污染物排放。关键字:LED(发光二极管),印度的废物,电力,环境介绍,已建造了249个废物到能源设施来发电。焚化被用作能量植物,以从干燥,可燃废物(如市政固体废物(MSW))中回收能量,其热量超过1500 kcal/kg。此外,在州污染控制板(SPCB)审查的植物中,安装了在线排放监控系统。在印度城市地区,每年产生约5500万吨市政稳定废物(MSW)和380亿加仑的污水。此外,行业产生大量的固体和液体废物。制造该研究项目的目的是从不良材料,例如塑料,橡胶,垃圾和坏东西等产生电能,并通过电路和使用整个工作模型将电能存储在电池中。印度将以每人每年增加1%至1.3%的浪费造成浪费。这严重影响可用土地的数量。这对于处置,收集和运输废物的财务成本以及先进的MSW技术的环境影响可能是必需的。可以在燃烧可回收的纤维/废纸和现有锅炉的新的有效锅炉中燃烧废纸,这些锅炉燃烧煤炭,木材废料或两者都可以燃烧。在纸浆和造纸厂以及其他商业或工业设施中,生产的功率可以取代化石燃料的使用。在这个项目中,我们说明了如何有效地从废料中发电。如果电力是电力的,则可以将任何过量的发电量出售回电网,从而消除了对额外的化石燃料的需求。该行动计划将为不可再生能源保留可再生的生物量能量,这将减少(二氧化碳)CO 2,氧化硫和挥发性有机化合物的排放,即使使用的总能量总量可能不会减少。我们还清楚地展示了如何使用项目模型中的污染控制过滤器有效控制污染。完成项目模型后,我们检查以查看其功能的功能。因此,我们的项目模型是操作和试图演示如何从废料中发电的最有效的。在我们的项目中,我们成功地演示了如何通过打开LED灯泡并使用过滤器到