摘要目的——地面振动测试对于飞机设计和认证至关重要。快速松弛矢量拟合 (FRVF) 和 Loewner 框架 (LF) 最近扩展到机械系统中的模态参数提取,以解决时间和频域技术的计算挑战,用于航空相关结构的损伤检测。设计/方法/方法——FRVF 和 LF 应用于数值数据集以评估噪声稳健性和损伤检测性能。还评估了计算效率。此外,它们还应用于一种新的高纵横比机翼损伤检测基准,将其性能与最先进的方法 N4SID 进行比较。结果——FRVF 和 LF 可有效检测结构变化;LF 表现出更好的噪声稳健性,而 FRVF 的计算效率更高。实际意义——建议在有噪声的测量中使用 LF。原创性/价值——据作者所知,这是首次应用 LF 和 FRVF 提取航空相关结构中的模态参数的研究。此外,还介绍了一种新型高纵横比机翼损伤检测基准。
Gallo等人,2018年:直接的早期基因,记忆和精神疾病:专注于C-Fos,Egr1和Arc。PMID:29755331 Glover and Harrison,1995:异二聚体BZIP转录因子C-FOS-C-JUN与DNA结合的晶体结构。PMID:7816143 Herrera和Robertson,1996:大脑中C-Fos的激活。PMID:8971979 Mayer and Bendayan,2001年:细胞和组织中稀有分子免疫定位的扩增方法。PMID:11194866 Morgan等,1987:癫痫发作后中枢神经系统中C-FOS表达的映射模式。PMID:3037702 Sheng and Greenberg,1990:神经系统中C-FOS和其他直接早期基因的调节和功能。PMID:1969743
在容错方面,量子计算的实用性将取决于量子算法中噪声影响的可避免程度。混合量子-经典算法(如变分量子特征值求解器 (VQE))是为短期方案设计的。然而,随着问题规模的扩大,VQE 结果通常会因当今硬件上的噪声而变得杂乱。虽然错误缓解技术在一定程度上缓解了这些问题,但迫切需要开发对噪声具有更高鲁棒性的算法方法。在这里,我们探索了最近引入的量子计算矩 (QCM) 方法对基态能量问题的鲁棒性,并通过分析示例展示了底层能量估计如何明确地滤除非相干噪声。受此观察的启发,我们在 IBM Quantum 硬件上为量子磁性模型实现了 QCM,以检查随着电路深度的增加噪声过滤效果。我们发现 QCM 保持了极高程度的误差稳健性,而 VQE 则完全失效。在量子磁性模型中,对于多达 20 个量子比特的超深试验态电路(最多 500 个 CNOT),QCM 仍然能够提取合理的能量估计值。大量实验结果支持了这一观察结果。要达到这些结果,VQE 需要在错误率上将硬件改进大约 2 个数量级。
储存和稳定性: 抗抑性 RT-qPCR 预混液采用干冰 / 蓝冰运输。到货后储存于 -20°C 下,以获得最佳稳定性。应避免反复 冻融循环。运输过程中解冻不影响产品性能。每次解冻后应混合 / 平衡溶液以避免分相。 有效期: 在外包装盒标签上的有效期内,在推荐条件下储存并正确处理时,试剂盒可保持完整活性。 安全预防措施: 处理试剂前请阅读并理解 SDS (安全数据表)。首次发货时提供 SDS 的纸质版文件,此后可应要求提 供。 质量控制: Meridian 遵守 ISO 13485 质量管理体系运行。抗抑性 RT-qPCR 预混液及其组分在活性、持续合成能 力、效率、热激活、灵敏度、无核酸酶污染和无核酸污染等方面均经过广泛测试 注: 仅供科研和 / 或进一步生产使用。
脑电图(EEG)在临床癫痫治疗中常用于监测癫痫患者脑部电信号的变化。随着信号处理和人工智能技术的发展,人工智能分类方法在癫痫脑电信号的自动识别中发挥着重要作用。但传统分类器容易受到癫痫脑电信号中杂质和噪声的影响。针对这一问题,该文设计了一种抗噪声低秩学习(NRLRL)脑电信号分类算法。NRLRL建立低秩子空间连接原始数据空间与标签空间,充分利用监督信息,考虑样本局部信息的保存性,保证类内紧凑性和类间离散性的低秩表示。将非对称最小二乘支持向量机(aLS-SVM)嵌入到NRLRL的目标函数中。 aLS-SVM基于pinball损失函数寻找两类样本间的最大分位数距离,进一步提高了模型的噪声鲁棒性。在Bonn数据集上设计了多个不同噪声强度的分类实验,实验结果验证了NRLRL算法的有效性。
分散的学习(DL)启用与服务器的协作学习,而无需培训数据,可以使用户的设备留下。但是,DL中共享的模型仍然可用于推断培训数据。传统的防御措施,例如差异隐私和安全汇总在有效地保护DL中的用户隐私方面缺乏牺牲模型效用或效率。我们介绍了Shatter,这是一种新颖的DL方法,其中节点可以创建虚拟节点(VN S)代表他们传播其完整模型的块。这通过(i)防止攻击者从其他节点收集完整模型,以及(ii)隐藏产生给定模型块的原始节点的身份。从理论上讲,我们证明了破碎的收敛性,并提供了正式的分析,揭示了与在节点之间交换完整模型相比,Shatter如何降低攻击的效力。我们评估了与现有DL算法,异质数据集的融合和攻击弹性,并与三个Standard隐私攻击进行评估。我们的评估表明,破碎不仅使这些隐私攻击在每个节点运行16个VN时不可行,而且与标准DL相比,对模型实用程序产生了积极影响。总而言之,Shatter在保持模型的效用和效率的同时,增强了DL的隐私。
a 3D 光学计量(3DOM)部门,布鲁诺凯斯勒基金会(FBK),Via Sommarive 18,38123,特伦托,意大利 franex@fbk.eu,http://3dom.fbk.eu b 特温特大学,地理信息科学与地球观测学院(ITC),地球观测科学系,P.O.Box 217,7500AE Enschede,荷兰 m.gerke@utwente.nl 第三委员会 - WG 1 关键词:图像匹配、DSM、马尔可夫随机场、图切割、平滑 摘要:如今,图像匹配技术可以提供非常密集的点云,它们通常被认为是 LiDAR 点云的有效替代方案。然而,与 LiDAR 数据相比,摄影测量点云通常具有更高水平的随机噪声和存在较大异常值的特点。这些问题限制了摄影测量数据在许多应用中的实际使用,但仍需找到增强生成点云的有效方法。在本文中,我们专注于从密集图像匹配点云计算出的数字表面模型 (DSM) 的恢复。摄影测量 DSM,即表面的 2.5D 表示,仍然是从点云派生的主要产品之一。提出了四种专门用于 DSM 去噪的不同算法:标准中值滤波方法、双边滤波、变分方法(TGV:总广义变分),以及一种新开发的算法,该算法嵌入马尔可夫随机场 (MRF) 框架并通过图计算进行优化
摘要 — 可靠的婴儿哭声识别在婴儿护理和监护中起着至关重要的作用,但现实环境由于背景噪音对系统准确性构成了挑战。本研究提出了一种用于在不同噪音条件下识别婴儿哭声的新型 CNN 架构,该架构具有三个卷积层、一个最大池化层和 0.5 丢失集,并将其性能与标准 RNN 模型进行了比较。这些模型以 64 的批大小训练了 100 个时期,并在干净和嘈杂的环境中进行了评估。为了模拟真实场景,将录音转换成音频信号并受到不同程度的背景噪音的影响,特别是在不同的信噪比 (SNR) 下。结果表明,两种模型在无噪音条件下都实现了高精度 (>89%)。然而,在 10dB 噪音下,提出的 CNN 比 RNN 保持了更高的精度 (93%) 和总体准确率 (91%),证明了其在婴儿哭声识别方面的卓越抗噪性。这种改进归功于 CNN 能够捕捉音频信号中的空间特征,这使其不易受到噪音干扰。这些发现有助于开发更可靠、更强大的婴儿哭声识别系统。