咖啡(Coffea spp)是世界上最重要的作物之一,为发展中国家数百万人提供了经济支持。在哥斯达黎加,咖啡生产以中小型生产商为主,惠及该国八个地区38,804个从事种植的家庭。咖啡生产特别容易受到害虫和疾病的侵袭。锈病是由真菌 Hemileia vastatrix 引起的,被认为是咖啡产区广泛分布的主要疾病。按照传统方法改良咖啡和获得新品种的过程大约需要三十年。然而,突变诱导为诱导咖啡改良所需的新基因变异提供了巨大的潜力。由于咖啡是哥斯达黎加的主要作物之一,并被认为是世界上最好的作物之一,但该国的咖啡种植活动因锈病等疾病的侵袭而面临风险。因此,有必要寻找新的遗传抗性的替代品
CSIC的职能包括有关科学和技术的公共和私人实体的通知,协助和咨询,如其章程第5条所述。 在执行这项任务时,我们将报告对抗生素的细菌抵抗,从公共政策系列的科学系列中,作为针对公共行政和整个社会的文件。 它解释了有关细菌对抗生素的耐药性日益增长的基本概念,列出了对生态系统的主要影响,并概述了CSIC最重要的研究in的一些多耐药细菌行为以及最具创新性的治疗方法。CSIC的职能包括有关科学和技术的公共和私人实体的通知,协助和咨询,如其章程第5条所述。在执行这项任务时,我们将报告对抗生素的细菌抵抗,从公共政策系列的科学系列中,作为针对公共行政和整个社会的文件。它解释了有关细菌对抗生素的耐药性日益增长的基本概念,列出了对生态系统的主要影响,并概述了CSIC最重要的研究in的一些多耐药细菌行为以及最具创新性的治疗方法。
此技术论文描述了锁定放大器的最多用途之一,即四点AC固定测量(也称为四端或四线)。材料或设备的电阻(或者通过样品几何形状进行正常的电阻率)是一种基本特性,可用于理解Maperial的电子行为,无论是从物理,材料科学的角度还是电气工程的角度来看[1-3]。的确,它是我们小组中最早的测量之一,以了解新合成的导电材料。例如,金属的电阻率将随温度降低而降低,而随着电荷载体“冻结”,半导体或绝缘体的电阻率将增加。为了进一步量化金属的质量,可以通过测量室温下的电阻比除以低温下的电阻(4 K)来隔离杂质和晶体缺陷的影响。这是所谓的残余电阻率或RRR。完美的金属晶体将在零温度(无限RRR)下具有零分解性,而杂质会导致耐药性饱和至有限的值(较小的RRR)。纵向抗性当然是识别超导性的关键措施[4,5]。电阻率测量的其他用途包括识别
摘要。随着物联网(IoT)今天推出,其寿命可能超过十年的设备,保守的威胁模型应考虑具有量子计算能力的对手。IETF指定的西装标准定义了用于物联网软件更新,标准化元数据和加密工具(数字签名和哈希功能)的安全体系结构,以确保更新合法的更新。西装性能已在量词前的文本中进行了评估,但尚未在量词后的情况下进行评估。以Riot中可用的诉讼的开源实施为案例研究,我们调查了量子后的注意事项,尤其是抗量子的数字签名,重点介绍了具有严格的内存,CPU和能量消耗限制的低功耗,基于微控制器的IoT设备。我们基准在一系列物联网硬件上进行一系列量子前和后量牌签名方案,包括ARM Cortex-M,RISC-V和Espressif(ESP32),这些方案构成了现代32位微控制器架构的大部分。在诉讼的背景下解释我们的基准,我们估计了从量词前签名到后签名过渡的现实影响。
抽象成纤维细胞生长因子受体(FGFR)在促进癌细胞的增殖,分化和迁移方面起着关键作用。通过酪氨酸激酶抑制剂(TKI)灭活FGFR,在靶向肿瘤靶向疗法方面取得了巨大成功。 但是,对FGFR-TKI的抵抗已成为一个问题。 在这里,我们回顾了癌症中FGFR-TKI抗性的机制,包括守门人突变,替代信号通路激活,溶酶体介导的TKI隔离和基因融合。 此外,我们总结了克服抗药性的策略,包括开发共价抑制剂,开发双靶抑制剂,采用组合疗法并靶向溶酶体,这将促进过渡到精确医学和个性化治疗。 关键字:FGFR,酪氨酸激酶抑制剂,耐药性,守门人突变,溶酶体固换通过酪氨酸激酶抑制剂(TKI)灭活FGFR,在靶向肿瘤靶向疗法方面取得了巨大成功。但是,对FGFR-TKI的抵抗已成为一个问题。在这里,我们回顾了癌症中FGFR-TKI抗性的机制,包括守门人突变,替代信号通路激活,溶酶体介导的TKI隔离和基因融合。此外,我们总结了克服抗药性的策略,包括开发共价抑制剂,开发双靶抑制剂,采用组合疗法并靶向溶酶体,这将促进过渡到精确医学和个性化治疗。关键字:FGFR,酪氨酸激酶抑制剂,耐药性,守门人突变,溶酶体固换