简介 数字处理能力的成本以及固态功率转换的成本正在不断下降。因此,电子设备越来越多地用于涉及安全、安全相关和安全关键的应用中,尤其是在工业、商业、医疗和运输控制和自动化应用中。这些电子设备的准确性和可靠性是功能安全的一个问题。所有电子技术在其运行环境中受到电磁 (EM) 干扰时,本质上都容易出现不准确、故障甚至永久性损坏。现代电子设备中硅片特征的不断缩小使其功能更强大、成本更低 - 但这种缩小及其相关的较低工作电压使设备更容易受到电磁干扰 (EMI)。由于数字、开关模式和无线技术的使用日益广泛,环境中电磁干扰的强度和频率范围一直在恶化。再加上电子设备对 EMI 的敏感性不断增加,电子设备的可靠性本身正在下降,这对功能安全产生了重要影响。EMC 标准和法规围绕频谱控制问题而发展,并且(一般而言)不试图解决安全问题。安全标准和法规通常对 EMI 相关问题的覆盖面很差。因此,在涉及安全的/相关的/关键的系统中采用电子设备的制造商几乎没有标准和法规来指导他们,并且
首先研究电路对不同 RF 场的幅度响应(忽略“天线”,假设 EUT 和电缆的设置不变),我们发现模拟电路通常对 RF 场的响应具有解调典型的平方律关系。例如,将场强增加 6dB 通常会导致信号误差增加 12dB。因此,即使场分布发生微小变化,和/或电缆数量及其布局发生微小变化,也会对 EUT 响应造成很大差异。例如,如果 EUT 的模拟功能在其性能标准下比其低 6dB,则它似乎已经通过了测试,并且幅度不错 - 但是在其一条电缆附近场强增加 5dB 可能会导致信号误差增加 10dB,使功能比其性能标准高 4dB。或者,如果电缆或 EUT 的一部分暴露在低 4dB 的场强下,3dB 的失败可能会变成 5dB 的通过。