摘要:线材和电弧增材制造 (WAAM) 是一种基于传统电弧焊工艺的先进金属材料 3D 打印方法。WAAM 被认为是制造大尺寸金属部件的合适方法,具有高沉积速率和低成本的特点。在本研究中,使用 WAAM 沉积专门设计和制造的低碳高强度钢 (Grade 3D AM 80 HD) 线材(相当于 AWS ER 110S-1 线材的成分)以打印多焊道壁,旨在探索其在重载海洋应用中的可行性。进行了参数研究以找到最佳沉积电压和重叠率。采用垂直位置补偿法来优化相邻层之间焊枪的步进距离。沉积部件的微观结构通过 Thermal-Calc 软件进行表征和指示,然后测量硬度并预测拉伸强度。此外,还对 WAAMed 3D AM 80 HD 壁、3D AM 80 HD 线材、AWS ER 110S-1 线材和线材制造商(Voestalpine Böhler Welding Corporation)生产的 WAAMed 壁的抗拉强度进行了比较。关键词。线材和电弧增材制造 (WAAM)、钢材、参数研究、微观结构、机械性能。
摘要:众所周知,在现代微电子和纳米电子学中,薄膜结构被广泛用作栅极电介质、钝化层、膜等。本文研究了单晶硅晶片上互连脉冲加热过程中氧化硅薄子层中形成裂纹的问题。本文旨在研究表面热冲击源对薄膜裂纹形成的影响,并详细研究了 SO2 薄膜中裂纹形成的各个方面。在硅衬底-氧化硅子层-铝膜 (Si-SiO 2 -Al) 多层结构上对所做的估计进行了实验验证。作为衬底,使用了磷掺杂的硅单晶晶片,取向为 (111) 方向,电阻率在 = 0.1 Ω . сm 范围内。作者研究了表面金属化层加热的硅晶片(Al-Si 系统)和氧化硅晶片(Al-SiO2 系统)的温度场,既有点热源的情况,也有长矩形金属化路径的情况(假设轨道长度明显超过其宽度)。计算结果表明,金属化路径(宽度 75 μm)横向的温度分布是不均匀的。结果还表明,与 SiO2 膜相比,硅中出现的机械应力水平不足以在热冲击源附近形成裂纹。这是因为硅的抗拉强度高于氧化物。
高速烧结是一种新型粉末床熔合增材制造技术,该技术使用红外灯提供密集的热能来烧结聚合物粉末。热能的量对于解决与颗粒聚结相关的缺陷(如孔隙率)至关重要。本研究调查了能量输入对孔隙率及其对聚酰胺 12 部件机械性能的影响。样品以不同的灯速生产,产生从低到高的不同能量输入。然后使用 X 射线计算机断层扫描技术对它们进行扫描,随后对其进行拉伸测试。发现能量输入、孔隙率和机械性能之间存在很强的相关性,其中孔隙形成的根本原因是能量输入不足。更多的能量输入导致孔隙率降低,从而导致机械性能改善。通过使用标准参数,实现的孔隙率、极限拉伸强度和伸长率分别为 0.58%、42.4 MPa 和 10.0%。进一步增加能量输入可使孔隙率降至最低 0.14%,极限抗拉强度和伸长率最高,分别为 44.4 MPa 和 13.5%。研究了孔隙形态、体积、数量密度和空间分布,发现这些与能量输入和机械性能密切相关。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
引言:钛合金,包括Ti-6Al-4V,具有良好的机械和化学性能,如高抗拉强度和韧性、优异的抗腐蚀和氧化性能、重量轻、耐极端温度、高强度重量比。因此,它们越来越多地应用于航空航天、航天器、汽车、生物医学、化工和石化、海上石油和天然气、海水淡化和发电行业[1-8]。为了克服在使用传统加工技术加工钛合金等超级合金时遇到的困难,工程车间采用了非常规技术。这些技术包括电火花加工 (EDM)、超声波加工 (USM)、磨料水射流加工 (AWJM) 和激光加工 (LM) [5, 9-10]。激光切割是一种使用激光切割材料的热切割工艺,通常用于工业制造应用。这是通过将高功率、相干、单色激光束(波长范围从紫外到红外)聚焦到工件表面来实现的。激光束的能量被工件吸收,导致聚焦点处材料的温度迅速升高。温度如此之高,以至于根据材料的特性和光束的强度,材料会熔化或蒸发,并可能发生化学转变,然后使用高压辅助气体去除[11- 19]。材料和机械部件的表面粗糙度在确定其加工性能方面起着重要作用
熔融沉积成型 (FDM),也称为熔融长丝制造 (FFF),是增材制造领域最成熟的技术之一,由于使用和维护成本低 [1],在低熔点聚合物中广受欢迎。进料材料以长丝形式通过加热喷嘴进料,并逐层沉积在表面上。商用热塑性塑料如丙烯腈丁二烯苯乙烯 (ABS)、聚碳酸酯 (PC)、尼龙、聚乳酸 (PLA) 及其组合经常用于生产 FDM 部件 [2]。虽然可以实现高度复杂的几何形状,但这会引发相对于块体材料的三种主要强度降低机制 [3]:(i) 由于空隙导致横截面积减小。仅此一项就已证明对抗拉强度有巨大影响 [4]。(ii) 空隙引起的应力集中。基于这一观察,Xu 和 Leguillon [5] 提出了双缺口空隙模型来解释 3D 打印聚合物的各向异性拉伸强度。(iii)聚合物链的不完全相互扩散。与几何方面无关,这会降低材料本身在细丝边界处的强度 [1] 。这三种现象由大量工艺参数控制,这些参数的强大影响和复杂相互作用超出了我们目前的知识范围,是一个活跃的研究领域。Cuan-Urquizo 等人 [6] 确定了两大类参数,即制造参数(例如喷嘴温度和打印速度)以及结构参数,
摘要:由于铜基合金具有高热导率,而镍基高温合金具有高高温抗拉强度,因此铜基弥散强化合金与镍基高温合金的连接在液体火箭发动机应用中引起了越来越多的关注。然而,这种接头在通过液态过程连接时可能会开裂,从而导致零件失效。在本文中,将 15–95 wt.% GRCop42 成分与 Inconel 625 合金化,并对其进行了表征,以更好地了解开裂的根本原因。结果表明,在对应于 30–95 wt.% GRCop42 的成分中,贫铜液体和富铜液体之间缺乏可混溶性。观察到两种不同的形态,并通过使用 CALPHAD 进行解释; 30–50 wt.% GRCop42 处为铜缺乏的枝晶,枝晶间区域为富铜,60–95 wt.% GRCop42 处为铜缺乏的球体,周围为富铜基质。相分析表明,脆性金属间相在 60–95 wt.% GRCop42 铜缺乏区域析出。本文提出了三种开裂机制,为避免镍基高温合金与铜基弥散强化合金接头缺陷提供指导。
原件收到日期:2024 年 12 月 7 日 接受出版日期:2024 年 2 月 8 日 Mohammed Amine Khater 机械工程博士 机构:LaRTFM,奥兰国立理工学院 MA 地址:阿尔及利亚奥兰 电子邮件:m-amine.khater@enp-oran.dz Chaaben Arroussi 机械工程博士 机构:谢里夫大学 LPTPM 实验室 地址:阿尔及利亚奥兰 电子邮件:c.arroussi@univ-chlef.dz Sid Ahmed Memchout 物理学博士 机构:奥兰 1 大学 LPCMME 实验室 地址:阿尔及利亚奥兰 电子邮件:msidahmed@hotmail.fr 摘要 本研究使用先进的有限元分析全面研究了受到轴向压缩载荷的 X60 钢管的抗屈曲性能。我们精心开发了一个详细而复杂的三维数值模型,用于分析各种关键参数在不同条件下如何影响管道的屈曲行为。所研究的关键参数包括管道的几何形状,特别是其外径和壁厚、内部压力以及钢材的机械性能,例如屈服强度和抗拉强度。研究结果表明,临界屈曲载荷对管道外径、壁厚、内部压力和屈服应力以及其他机械性能的变化高度敏感。对有限元分析结果和分析模型得出的结果进行全面比较,发现外径和壁厚具有良好的相关性,但在屈服强度方面存在很大差异,这突出了需要进一步研究的领域。
现有的用于激光增材制造 (LAM) 的商用粉末是为需要后热处理 (PHT) 的传统制造方法而设计的。LAM 独特的循环热历史会在沉积过程中对材料进行内在热处理 (IHT),这为开发 LAM 定制新材料提供了机会。这项工作定制了一种新型 Fe-Ni-Ti-Al 马氏体时效钢,并借助机器学习利用 IHT 效应在 LAM 过程中原位形成大量沉淀物,而无需 PHT。钢中的快速沉淀动力学、定制的间歇沉积策略和 IHT 效应促进了 Ni 3 Ti 在高密度位错上的异质成核,从而在马氏体基体中原位沉淀。成品钢的抗拉强度达到 1538 MPa,均匀伸长率达到 8.1%,优于各种 LAM 加工的高强度钢。在当前主流的非原位 4D 打印中,3D 打印结构随时间的变化(即属性或功能变化)发生在部件形成之后。这项工作重点介绍了通过将随时间变化的沉淀硬化与 3D 几何成形同步集成而进行的原位 4D 打印,这显示出高能源效率和可持续性。这些发现为通过理解和利用 IHT-材料相互作用来开发 LAM 定制材料提供了见解。
本论文断言,小规模的机械测试提供了以其工程长度尺度捕获相间相互关系的结构 - 性关系所需的分辨率和多功能性。通过开发四个新型实验来探测控制复合韧性的相间特性,从而探索了这一点。首先,高分辨率的SEM DIC量化了整个热解碳(PYC)键层的显微镜弹性,在Young的模量和Poisson的比率中找到了与Pyc graphitic纹理直接相关的梯度。第二,应用自动对准的微验测试的应用实现了抗拉强度的可靠提取和SIC/PYC/SIC相间的最弱连接特性。第三,使用微柱压缩来评估11个复合相间条件,定义了一个现象学方程,以最终剪切强度作为纤维粗糙度,PYC厚度和与纤维表面正常的残留压缩应力的函数。还量化了辐射和制造引起的缺陷的影响。和第四,开发了一种新型的纤维螺纹技术,用于直接提取纤维/基质之间的环状降解。在四个条件下进行测试表明,摩擦依赖于高达1000个周期的粘合剂和磨料机制。在底面的事后表征揭示了PYC结构的无定形过渡的结晶。
elvysreis@yahoo.com.br 摘要 将碳纳米管 (CNT) 添加到胶凝基体中,更具体地说添加到混凝土中,可以提高其强度和耐久性。从这个角度来看,本文旨在回顾含碳纳米管混凝土 (CNT 混凝土) 的主要工程性能。为此,我们使用 ProKnow-C 方法查找过去五年中发表的最相关论文,并选择了 19 篇文章进行完整分析。收集的数据包括 CNT 的类型、含量和分散技术,以及 CNT 混凝土的类型和性能,即抗压强度、抗拉强度和抗弯强度、弹性模量、吸水率、孔隙率和渗透性、电导率和电阻率、碳化和氯离子渗透阻力、断裂能和韧性。这篇系统的文献综述表明,添加 CNT 通常会提高混凝土强度,但其对其他工程性能(如碳化和氯离子渗透阻力、蠕变和收缩)的影响仍需要进一步研究。 关键词:水泥基材料;碳纳米管;力学性能;耐久性。1. 引言混凝土是世界上消耗最多的建筑材料,也是污染最严重的材料,其生产约占全球二氧化碳排放量的 7% [1]。由于其多种使用方式,数以百万计的钢筋混凝土 (RC) 结构每天都面临着恶劣的天气条件、污染和其他化学侵蚀,这些侵蚀会渗透并损坏其钢筋。然而,修复这些损坏的成本可能很高,正如美国土木工程师学会 (ASCE) 年鉴中所述 [2]。从这个意义上说,一些 RC 结构不断出现一系列耐久性问题,主要与腐蚀、潮湿、氯离子侵蚀、硫酸盐和碱金属有关。