Gallo等人,2018年:直接的早期基因,记忆和精神疾病:专注于C-Fos,Egr1和Arc。PMID:29755331 Glover and Harrison,1995:异二聚体BZIP转录因子C-FOS-C-JUN与DNA结合的晶体结构。PMID:7816143 Herrera和Robertson,1996:大脑中C-Fos的激活。PMID:8971979 Mayer and Bendayan,2001年:细胞和组织中稀有分子免疫定位的扩增方法。PMID:11194866 Morgan等,1987:癫痫发作后中枢神经系统中C-FOS表达的映射模式。PMID:3037702 Sheng and Greenberg,1990:神经系统中C-FOS和其他直接早期基因的调节和功能。PMID:1969743
储存和稳定性: 抗抑性 RT-qPCR 预混液采用干冰 / 蓝冰运输。到货后储存于 -20°C 下,以获得最佳稳定性。应避免反复 冻融循环。运输过程中解冻不影响产品性能。每次解冻后应混合 / 平衡溶液以避免分相。 有效期: 在外包装盒标签上的有效期内,在推荐条件下储存并正确处理时,试剂盒可保持完整活性。 安全预防措施: 处理试剂前请阅读并理解 SDS (安全数据表)。首次发货时提供 SDS 的纸质版文件,此后可应要求提 供。 质量控制: Meridian 遵守 ISO 13485 质量管理体系运行。抗抑性 RT-qPCR 预混液及其组分在活性、持续合成能 力、效率、热激活、灵敏度、无核酸酶污染和无核酸污染等方面均经过广泛测试 注: 仅供科研和 / 或进一步生产使用。
摘要:牛巴贝斯虫病是由巴贝斯虫属的顶复门寄生虫引起的。它是世界上最重要的蜱传兽医疾病之一;牛巴贝斯虫是与该病最严重的临床症状相关的物种,并造成最大的经济损失。由于与化学预防和杀螨剂控制传播媒介相关的许多限制,人们采用减毒活疫苗免疫接种来对抗牛巴贝斯虫作为替代控制策略。然而,虽然这种策略是有效的,但与其生产相关的几个缺点促使人们研究生产疫苗的替代方法。因此,本综述讨论了开发抗牛巴贝斯虫疫苗的经典方法,并将其与最近的功能方法进行了比较,以突出后者在设计针对这种寄生虫的有效合成疫苗时的优势。
抽象的羧基酯前药被广泛用于增加膦酸酯抗生素的口服吸收和效力。前药可以掩盖有问题的化学特征,从而防止细胞摄取,并可能使组织特异性化合物递送。然而,许多羧基酯宣传片被血清酯酶迅速水解,从而限制了它们的治疗潜力。虽然基于羧基酯的前药靶向是可行的,但在微生物中的使用有限,因为尚未描述微生物酯酶特异性的促进性。在这里,我们确定了细菌酯酶,球和FRMB,这些酯酶激活金黄色葡萄球菌中的羧基酯前药。此外,我们确定了FRMB和GLOB的底物特异性,并证明了这些偏好的结构基础。最后,我们建立了人和小鼠血清的羧基酯底物特异性,最终确定了几种可能是耐血清酯酶耐药性和微生物不稳定的宣传片。这些研究将实现抗磷杆菌宣传的结构引导的设计,并扩大分子范围为靶向葡萄球菌病原体。
摘要 水稻(Oryza sativa)是重要的粮食来源,也是基因组研究的重要模式谷类,害虫是制约水稻生产的主要因素。本文概述了功能基因组学研究和水稻抗虫遗传改良的最新进展。迄今为止,水稻中已鉴定出许多抗虫基因,并通过图位克隆的方法克隆了 14 个抗虫基因。这些基因编码的蛋白质感知昆虫的效应物并激活防御途径,包括防御相关基因的表达,包括丝裂原活化蛋白激酶、植物激素和转录因子;以及对昆虫的防御机制,包括胼胝体沉积、胰蛋白酶蛋白酶抑制剂(TryPIs)、次生代谢产物和绿叶挥发物(GLVs)。这些正在进行的功能基因组研究提供了对水稻 - 昆虫相互作用的分子基础的深入了解,并促进了新型抗虫水稻品种的开发,从而提高了对这种重要作物的长期害虫控制。
本期特刊旨在关注与微孢子虫和微孢子虫病的发病机理有关的任何方面。最初的研究文章,评论,简要研究报告和小型评论将受到欢迎,但不限于以下方面: - 围绕感染过程中微孢子虫蛋白和宿主细胞受体相互作用的新知识,在细胞入侵或任何信息中,在宿主或任何信息中填充宿主互动中的宿主免疫系统的相互作用机制,以填充宿主的宿主互动 - 填充宿主 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕斯特 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯群体 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯 - 帕克斯群体互动; - 新型蛋白质的鉴定(例如极地管
免疫受体酪氨酸基抑制基序(ITIM)类似于免疫检查点受体PD-1。 我们发现,CD33是乙型肝炎病毒(HBV)的模式识别受体,并产生了使用慢性肝炎患者的PBMC诱导抗HBSAG抗体诱导抗HBSAG抗体,表明SP-1 MAB能够破坏HBV诱导的免疫力。 我们进一步产生了针对CD33的高亲和力人类抗体,发现抗CD33 MAB(SP-2)可以激活小胶质细胞以摄取β-淀粉样蛋白和细胞外的高磷酸化tau蛋白。 Alector/Abbvie已在阿尔茨海默氏病(AD)中发起了I期临床,以确保抗CD33 MAB的安全性,并暗示SP-2抗体具有很大的潜力,可以成为治疗AD的治疗剂。。免疫受体酪氨酸基抑制基序(ITIM)类似于免疫检查点受体PD-1。我们发现,CD33是乙型肝炎病毒(HBV)的模式识别受体,并产生了使用慢性肝炎患者的PBMC诱导抗HBSAG抗体诱导抗HBSAG抗体,表明SP-1 MAB能够破坏HBV诱导的免疫力。我们进一步产生了针对CD33的高亲和力人类抗体,发现抗CD33 MAB(SP-2)可以激活小胶质细胞以摄取β-淀粉样蛋白和细胞外的高磷酸化tau蛋白。Alector/Abbvie已在阿尔茨海默氏病(AD)中发起了I期临床,以确保抗CD33 MAB的安全性,并暗示SP-2抗体具有很大的潜力,可以成为治疗AD的治疗剂。