折叠和折纸原理可以从平面paters中实现三维几何形状[1]。由于制造过程通常更有效,甚至一定要在两个维度上完成,因此折叠提供了一种利用这种效率的方法,并具有三维最终结果。平面制造过程与折叠的组合导致了与机器人[2,3],弹簧 - 孔子机制[4],反射和阵列[5,6]和超材料[7,8]一样的潜在应用。兼容的机制通过经历弹性变形而不是传统链接的刚体运动来转移或转化运动,力或能量[9]。各种制造技术可用于各种规模的合规机理,例如电线电气加工(EDM),增材制造,表面微加工,
参考文献:1) Ceze, L., Nivala, J. & Strauss, K. 使用 DNA 进行分子数字数据存储。Nat Rev Genet 20, 456–466 (2019)。https://doi.org/10.1038/s41576-019-0125-3 2)Ranjbar R, Hafezi-Moghadam MS。基于 MPT64 抗体适体的 DNA 折纸药物输送系统的设计和构建,用于治疗结核病。Electron Physician。2016 年 2 月 25 日;8(2):1857-64。doi:10.19082/1857。PMID:27053991;PMCID:PMC4821297。 3)光学纳米天线:作为生物传感器的最新技术、应用范围和挑战以及人类对纳米毒理学的暴露” Sensors 15, no. 4: 8787-8831. 4) Kearney CJ, Lucas CR, O'Brien FJ, Castro CE. DNA Origami:可引导和解释细胞行为的折叠 DNA 纳米装置. Adv Mater. 2016 年 7 月;28(27):5509-24. doi: 10.1002/adma.201504733. Epub 2016 年 2 月 3 日. PMID: 26840503; PMCID: PMC4945425. 5) Pinheiro AV, Han D, Shih WM, Yan H. 结构 DNA 纳米技术的挑战和机遇. Nat Nanotechnol. 6) Endo M, Sugiyama H. DNA 折纸纳米机器。分子。2018 年 7 月 18 日;23(7):1766。doi: 10.3390/molecules23071766。PMID: 30022011;PMCID: PMC6099981。(7) Hernandez-Garcia A. 构建混合蛋白质-DNA 纳米结构的策略。纳米材料。2021;11(5):1332。https://doi.org/10.3390/nano11051332
作者:A Mills · 2023 年 · 被引用 6 次 — 此类纳米装置的用途是测量蛋白质-DNA 结合力(35、36)或在细胞和非细胞系统中进行机械感应(41、42)。
3。N. Dushkina,A。Lakhtakia,《仿生与生物启示》(国际光学和光子学会,2009年),第7401页,第7401页。 740106。
人类肠道中包含大量的微生物,其代谢产物和潜在的有害食品抗原。肠上皮通过表达各种因素将各种因素组装成物理和化学屏障,将免疫细胞位于腔微生物中分离。除了上皮细胞外,免疫细胞对于通过产生炎症和抗炎性介质的生产而对粘膜屏障至关重要。肠道微生物群,由生物微生物的肠生态群落代表,影响宿主免疫系统的成熟和稳态,并有助于维持上皮完整性,并从其代谢中得出的小分子,称为代谢,称为代谢物。反过来,免疫细胞从微生物群中接收信号,并且可能在维持健康的细菌组成和增强上皮屏障功能方面起关键作用,从而导致宿主 - 细菌互助的建立。在包括炎症性肠道疾病在内的各种疾病的患者中,观察到微生物群和代谢组的改变。在这篇综述中,我们将讨论微生物及其代谢物在调节宿主免疫系统中的生理功能,并增强上皮屏障功能。对这些过程的进一步了解将有助于鉴定新的治疗靶标,并随后在一系列慢性炎性疾病中发展治疗干预措施。
摘要:在三维(3D)空间中塑造语音波的流在控制物质的声音和热特性中起着至关重要的作用。到此末端,3D语音晶体(PNC)被认为是金标准,因为它们的完整语音带隙(PNBG)可实现对声音波抗的全向抑制作用。尽管如此,在高频制度中实现完整的PNBG仍然具有挑战性,因为获得了相应的要求的中尺度3D晶体,该晶体由连续的框架网络组成,并具有常规的构造。在这里,我们报告了DNA折纸设计的3D晶体可以用作最宽的完整PNBG的高超音速3D PNC。DNA折纸晶体 - 液化可以前所未有地提供3D晶体,从而实现了中尺度的连续框架3D晶体。此外,它们的晶格对称性可以分子编程为在对称组和数字的层次结构中处于最高水平,这可以促进PNBG的扩大。更重要的是,共形硅拟合可以使DNA折纸3D晶体刚性。总体,
这项研究探讨了将增强现实(AR)与机器学习(ML)融合在一起,以通过折纸折叠来增强动手技能的获取。我们使用Yolov8模型开发了一个AR系统,以提供每个折叠步骤的实时反馈和自动验证,并为用户提供逐步指导。引入了一种新型的训练数据集准备方法,从而提高了检测和评估折纸折叠阶段的准确性。在一项涉及16名参与者折叠多个折纸模型的参与者的形成性用户研究中,结果表明,尽管ML驱动的反馈增加了任务完成时间,但它还使参与者在整个折叠过程中都感到更加认识。但是,他们还报告说,反馈系统增加了认知负载,尽管提供了宝贵的指导,但仍减慢了进度。这些发现表明,尽管ML支持的AR系统可以增强用户体验,但需要进一步优化才能简化反馈过程并提高复杂的手动任务中的效率。
等离子纳米结构经常用于创建具有多种光学效应的元整形面积。控制纳米结构的形状和定位是这种等离子跨面功能的关键。在光刻均值旁边,定向自组装是一条可行的途径,可在表面上以必要的精度在表面上创建等离子结构。在这里,提出了DNA折纸自组装和电子束光刻的组合方法,用于确定金纳米球在SIO 2表面上的定位。首先,DNA折纸结构与电子束图案的底物结合,然后通过DNA杂交连接到DNA折纸结构上定义的结合位点上的金纳米颗粒。然后使用溶胶 - 凝胶反应在DNA周围生长二氧化硅层,从而增加了自组装跨表面的稳定性。平均产量为74%的单金纳米球,位于确定位置,空间位置精度为9 nm。金纳米球二聚体和三聚体的速度分别为65%和60%。这种结构方法的适用性是通过制造的元张面积来证明的,其光学响应可以通过传入和散射光的极化来调节。
特别适用于为模仿生物微型游泳者的微电机提供拍打和/或旋转驱动。开创性的例子是 Dreyfus 等人建造的游泳者,它由一串拴在红细胞上的磁珠组成。[25] 在这里,游泳以衍生方式诱导精子,即通过拍打一个支持弯曲波传播的柔性附属物。自这一突破以来,已经制造出几种其他受生物启发的磁性微型游泳者,包括由定制微磁体、软磁复合材料和众多结构制成的微型游泳者,其中磁性区域驱动非磁性鞭毛/附属物。[13,15,16,20,26–29] 人们越来越多地研究附属物结构对游泳表现的影响,表明无论是生物系统还是合成系统,游泳速度都会随其长度、弹性和划水频率而变化。 [15,26,28,30] 此外,已确定生物微游泳者的集体相互作用微妙地依赖于鞭毛 (附属物) 耦合动力学和鞭毛下长度尺度上产生的流动。 [30] 这些相互作用在自然界中被用来提高性能:例如,老鼠精子形成长序列以提高其速度。 [7,10,30–33] 尽管如此,对合成系统的附属物设计进行严格控制仍然很困难,当需要纳米级特征时更是如此。 在纳米尺度上实现这种控制的一种特别有前途的方法是 DNA 自组装,正如 Maier 等人所采用的,用于生成基于 DNA 瓦管束的合成鞭毛。 [26] 当连接到旋转的磁珠上时,这些束通过水动力学组装成几微米的螺旋状结构,以类似于细菌的方式驱动平移运动。尽管组装技术可以精确控制合成鞭毛的扭曲和硬度,但它们的长度容易发生寡聚化并且不受控制。在本文中,我们基于 Maier 等人的工作,使用另一种 DNA 自组装策略,即 DNA 折纸。在这里,一个由 8634 个核苷酸组成的单链 DNA 环通过单链 DNA 寡聚体的特定结合以预定方式折叠,以构建定制的、尺寸可控的纳米级附加物。[34–37] 我们提出了一种调节附加物在磁珠上的覆盖率的方法,使其均匀或对称性破缺。通过时间相关磁场摇动这些结构时,我们发现,虽然完全被 DNA 折纸覆盖的结构主要表现出布朗动力学,