高功率转化效率(PCE)和机械鲁棒性是有机太阳能电池(OSC)可穿戴应用的先决条件。但是,应提高当前活动系统的可伸缩性(即裂纹发作菌株(COS)<30%)。在将弹性体引入活动系统中被认为是提高可伸展性的一种简单方法,但弹性体的包含通常会导致OSC的PCE减少,由于缺乏互连的电气和机械途径,该可拉伸性的提高有限。在这项研究中,它是通过在活动层中建立共轭聚合物(D18)和弹性体(SEB)的连续连续网络来发展的,具有特殊的机械鲁棒性(具有特殊的机械鲁棒性)。证明,D18的特定比(40:60 W/W)的混合膜:SEB对于形成共连接结构至关重要,建立了良好的机械和电通道。因此,D18 0.4:SEBS 0.6 /L8-BO OSC的可伸展性(COS = 126%)比基于D18 /L8-BO(COS = 8%)的OSC高16倍(COS = 126%),而基于SEBS-rich Active Layers = 3.8 0.8 0.20%的OSC(12.13%),达到4倍的PCE(12.13%)。此外,D18 0.4:SEBS 0.6基于0.6的IS-OSC将原始PCE的86%和90%的菌株保留在50%的菌株中,分别以15%的菌株拉伸/释放循环后,证明了报告的IS-OSC中最高的机械鲁棒性。
黄坤1 吴玉峰1 刘俊臣1 常耿2 潘旭超2,* 翁小迪3,* 王永刚1 雷明1,* 摘要 随着科技的发展和生活水平的提高,基于水凝胶的应变传感器受到了越来越多的关注。然而,制造具有理想机械和压阻性能的水凝胶应变传感器仍然具有挑战性。本文提出了一种双层柔性水凝胶传感器,该传感器由碳纳米管(CNT)和聚乙烯醇(PVA)制成,具有高达 415% 应变的高拉伸性和 92% 应变的超压缩性,以及相当大的电导率(1.11 S m -1 )。水凝胶传感器在整个检测范围内表现出很好的线性度、出色的耐用性和在 1000 次加载-卸载循环中稳定的相对电阻变化(∆𝑅𝑅 0 ⁄)。这些优异的性能归功于一种新的双层结构设计,即在纯坚固的 PVA 基底上沉积一层薄薄的 CNTs/PVA 导电传感器层。结合快速响应时间(拉伸时为 508 毫秒,压缩时为 139 毫秒)和生物相容性,这种新型传感器具有作为可穿戴传感器的巨大潜力,可用于表皮传感应用,例如检测人体关节的弯曲、吞咽、呼吸等。此外,CNTs/PVA 水凝胶可以利用其内部离子来操作电子屏幕,甚至可以使用机械信号来调制光信号。所有这些都证明了 CNTs/PVA 水凝胶作为应变传感器的巨大优势。
摘要 具有高拉伸性、灵敏度和稳定性的柔性压力传感器无疑是智能软机器人、人机交互、健康监测等领域潜在应用的迫切需求。然而,目前的柔性压力传感器大多由于其多层结构,无法承受大变形,在频繁操作过程中容易出现性能下降甚至失效。本文提出一种可拉伸全纳米纤维离子电子压力传感器,其由离子纳米纤维膜作为介电层、液态金属作为电极组成。该传感器在0~300 kPa的宽范围内表现出1.08 kPa -1的高灵敏度,具有约18/22 ms的快速响应-松弛时间以及良好的稳定性。高灵敏度来自于离子膜/电极界面形成的双电层,而高拉伸性和稳定性则源于原位封装的全纳米纤维结构。作为概念验证,原型传感器阵列被集成到柔性气动夹持器中,展示了其在抓取过程中的压力感知和物体识别能力。因此,该方案提供了另一种极好的策略来制造在高拉伸性、灵敏度和稳定性方面具有出色性能的可拉伸压力传感器。
柔性电子设备在可穿戴设备、植入式设备、机器人和显示器等许多未来技术中都有着广阔的应用前景。在各种机械柔性中,可拉伸性是一项重大挑战。一个特别艰巨的目标是实现一种高性能透明电极,这种电极既能承受拉伸,又能大规模生产,同时又能避免对设备密度产生额外的限制。在这项研究中,通过对 3D 波纹图案和平面表面的统计比较,证明了 3D 波纹图案表面使沉积的氧化铟锡电极的应变性能提高了三倍,其中氧化铟锡电极被拉伸至电气故障。此外,该平台减轻了残余薄膜应力,使基板的处理更加容易。这项研究证明了使用可扩展平台实现未来电子设备可拉伸性的可行性,该平台仅使用常规材料和制造步骤就结合了高性能透明电极材料。
治疗,并实现新的消费者可穿戴技术,如电子皮肤、电子纺织品和软机器人。2 与身体保形和不可察觉集成的先决条件是需要柔软且可拉伸的电子设备。这些设备包含多个电气元件来执行复杂的功能,并且已经取得了进展以实现其在操作过程中的可拉伸性,但它们通常设计用于容纳刚性和笨重的电池组件。3–5 集成可拉伸紧凑的电池将缓解这个问题。然而,增加现有可拉伸电池设计中的氧化还原活性材料含量通常会导致电极更硬且可拉伸性更低。6–8 此外,它们主要基于不可持续的过渡金属氧化物活性材料、不可生物降解的石油基弹性体(有机硅、苯乙烯嵌段共聚物等)和集电器中昂贵的导电金属纳米填料(金、银等)。9
摘要:热电(TE)技术提供了一种直接收获和转换从人体连续释放的热量的新方法。对可穿戴te发电机应用的TE材料的最大挑战与人体不断变化的形态兼容,同时又具有连续稳定的功率输出。在这里,通过改进的湿式旋转方法制备了可拉伸的羧基单壁碳纳米管(SWNT)的TEFER。即使在约30%的拉伸应力下,基于退火的羧基SWNT的稳定sebeck系数也是44μv/k。实验结果表明,当将其更改为各种形状时,文件可能会继续产生恒定的TE电位。与基于Seebeck效应的现有TE纤维相比,新的可拉伸性Tefer具有更大的塞贝克系数,并且具有更大的可拉伸性,这为将技术用于各种实用应用开放了一条途径。关键字:碳纳米管,热电材料,seebeck效果,可拉伸纤维
电子产品。 [1–3] 然而,电子设备数量的迅速增加引发了严重的环境问题,因为通过填埋不当处理科技废物、使用有毒物质以及大量的碳足迹对自然构成了巨大威胁。 [4] 由于回收利用往往不切实际且成本高昂,如果能够缩小与传统电子产品的性能差距,新兴的可降解电子产品将提供一种可持续的解决方案。 [5] 对于可拉伸系统,这对所用材料的机械性能提出了严格的要求。包括传感器在内的保形电子皮肤完全是柔软的,但为了达到高度的不可感知性,需要可拉伸的设备。 拉伸性使其对使用过程中的表面和变形的适应性更高。 [6] 此类设备的可生物降解版本需要开发与其保形性和可降解性相匹配的电源。 [7] 据报道,完全可降解超级电容器能够为手表供电,且具有高面积电容,但它们的低能量密度和负载下工作电压线性下降使得它们不适合耗电的电子应用。 [8,9] 另一方面,可拉伸电池提供稳定的工作电压和更长运行时间所需的高能量密度。 到目前为止,这些设备主要利用不可降解和有毒材料的优势。 [10–12] 虽然完全可降解软电池在功率输出方面有所改进,但它们还无法与不可降解设计相媲美,而且它们的可拉伸实现仍处于起步阶段。 [13–15] 刚性可降解电源通常利用镁、铁或钼等金属的高理论能量密度,但实现相同的可拉伸版本仍然是一个挑战。 [16,17] 此类金属通常几乎不表现出超出一定程度的不可逆延展性的固有拉伸性。这可以通过各种后处理方法(例如薄膜屈曲、刚性岛设计)来解决,但是,这些方法需要简单易行,并且不能过度损害性能。[18] 预拉伸基板上的电极膜屈曲虽然提供了可逆拉伸性,但迄今为止仅报道了不可降解电极材料,如聚二甲基硅氧烷-碳纳米管复合材料或金属化聚对苯二甲酸乙二醇酯 (PET) 箔。[19,20] 此类
可拉伸电子产品在医学、传感和机器人领域的应用越来越受到关注。当前的可拉伸材料要么是本质上可拉伸的,要么是图案化为可拉伸结构,要么是通过形成某种可拉伸材料和具有某些所需特性(例如高导电性)的刚性材料的复合材料而制成的。然而,文献中缺乏可拉伸磁性材料,而将可拉伸性和磁性相结合的设备仅限于使用串行制造工艺,例如将毫米级磁体嵌入聚合物基质中。在这项研究中,我们介绍了一种可拉伸复合硬磁墨水,该墨水由钡六铁氧体纳米颗粒与 9510 单组分环氧灌封化合物和二(丙二醇)甲醚混合而成。然后使用丝网印刷方法,将该墨水用于制造磁应变传感器,作为材料和工艺的概念验证。结果表明,可以制成一种可拉伸的硬磁墨水,其由钡六铁氧体颗粒夹杂物提供 20 kA/m 的剩磁,并由环氧树脂提供至少 100% 应变的拉伸性。
有机电化学晶体管(OECTS)代表了一个新兴的设备平台,用于下一代生物电子学,这是由于对生物信号的独特增强和敏感性。用于实现无缝的组织 - 电源界面,以获得准确的信号获取,皮肤样柔软性和可伸缩性是必不可少的要求,但尚未将其赋予高性能OECT,这在很大程度上由于缺乏可拉伸的可拉伸性氧化还原活性半导体聚合物。Here, a stretchable semiconductor is reported for OECT devices, namely poly(2-(3,3 ′ -bis(2-(2-(2-methoxyethoxy) ethoxy)ethoxy)-[2,2 ′ -bithiophen]-5)yl thiophene) (p(g2T-T)), which gives exceptional stretchability over 200% strain and 5000 repeated stretching cycles, together with OECT的性能与最先进的表现。通过系统的特征和不同聚体的比较验证,该聚合物的关键设计特征是使高可伸缩性和高OECT性能结合的非线性骨架结构,中等的侧链密度和足够高的分子量。使用这种高度可拉伸的聚合物半导体,具有高归一化的跨导率(≈223s cm-1)和双轴可拉伸性高达100%应变,以高归一化的跨导率(≈223s cm-1)制造。此外,还展示了皮肤心电图(ECG)记录,它结合了内置放大和前所未有的皮肤的可比性。
对灭菌条件、对不同细菌的有效性及其抗菌效果的长期持久性的影响。[29-30] 研究了将商用导电纺织材料掺入织物基材中开发纺织基热电偶的可行性。通过应用不同类型的导电纺织材料、在经向和纬向使用的导电纱线数量以及调整织物基材的纱线密度,考虑温度传感能力和织物拉伸性之间的平衡。研究了纺织基热电偶的电阻、导电纱线的选择、结构排列和弯曲程度之间的关系。它