为应对气候变化、生物多样性丧失、废物和污染等全球挑战而制定的系统解决方案框架。通过这种方式,它减少了从自然界开采原材料,减少了整个链条上的浪费,从而通过更好的管理和流程优化在产品周期中创造更多价值。Potting 等人 (2017) 提出了十种可能的循环战略,分为三类:更智能的产品制造和使用(R0 到 R2);延长产品或其零件的使用寿命(R3 到 R7)和材料的有用应用(R8 和 R9),其中 R0 代表更高的循环性,而 R9 代表更高的线性。De Almeida 等人 (2021) 认为,鉴于从线性经济向循环经济的过渡过程的复杂性,特定的模型和框架可以为组织提供支持。在食品行业,转变主要集中在食品垃圾上,因为它占垃圾产生的很大一部分,但并不总是被视为垃圾,而是可以纳入其他工艺的可能的原材料(Rajković et al.,2020)。
摘要:奶酪(气味,颜色,质地和浮雕)的有机肌肉特征的技术缺陷降低了质量和消费者的接受度。Cabrales奶酪中的红色缺陷(一种由生牛奶制成的传统,蓝牙的西班牙奶酪)很少发生,但对家族拥有的手工奶酪制造业务产生了显着的经济影响。这项工作报告了基于培养的Marcescens的确定,因为与此类奶酪的表面和附近的红色斑点涉及的微生物有关。对一链球菌分离株RO1的基因组的测序和分析显示,有16个基因参与Protigiosin的生产,Protigiosin,tryyrrole红色颜料。HPLC分析确认了在Marcescens RO1培养物的甲醇提取物中的质毒素的存在。在受影响奶酪的红色区域的提取物中也观察到了同样的情况。菌株在酸性条件下显示出较低的存活率,但不受高达5%NaCl的浓度影响(蓝纹奶酪的通常值)。琼脂链球菌在琼脂板上产生的质毒素的最佳条件为32℃和有氧条件。prodigiosin具有抗菌活性,这与Ro1上清液对不同细菌的抑制作用相吻合,对不同细菌的抑制作用以及奶酪制造过程中毒性杆菌的抑制作用延迟延迟发展。通过重现接种RO1的实验性奶酪中的断层,可以增强Marcescens链球菌与红色缺陷之间的关联。在这项研究中收集的数据指向起始牛奶是该细菌在奶酪中的起源。这些发现应有助于制定策略,以最大程度地减少牛奶中色素化链球菌的发生率,红色缺陷,奶酪中的细菌原因及其相关的经济损失。
关于系:物理与材料科学与工程系 (PMSE) 为 ECE、CSE、IT 和生物技术分支的 B.Tech 学生提供多门物理和材料科学基础和高级课程。该系拥有丰富的物理学博士和硕士学位课程。该系认为物理学的目标是从第一原理理解物理世界中一切事物的运作。该系结合物理学和材料科学来解决与能源、纳米技术、量子器件、光学和其他主要工程学科相关的实际问题。该系拥有配备最先进设备的研究实验室。该系专注于纳米科学和多功能纳米材料、能源和先进功能材料、原子和分子物理学、光子学和等离子体学、量子光学和量子信息、光学传感器、振动光谱、拉曼光谱、固态离子学、稀磁半导体 (自旋电子学)、热电和超导材料以及激光等离子体相互作用的研究。此外,系里的教职人员还负责指导博士后研究员。博士后研究员和大量外部资助项目的存在增强了系里的学术氛围。
[1] Sazali, N.、Salleh, W.、Nordin, N. 和 Ismail, A. (2015)。基于基质的碳管膜:碳化环境的影响。《工业与工程化学杂志》,第 32 卷,第 167-171 页。[2] Sazali, N.、Salleh, W.、Ismail, A.、Nordin, N.、Ismail, N.、Mohamed, M. 和 Jaafar, J. (2018)。在碳膜开发中加入热不稳定添加剂,实现卓越的气体渗透性能。《天然气科学与工程杂志》,第 49 卷,第 376-384 页。[3] Sazali, N.、Salleh, W. 和 Ismail, A. (2017)。由纳米晶体纤维素与 P84 共聚酰亚胺混合制成的碳管膜可用于 H2 和 He 分离。国际氢能杂志,42(15),9952-9957。[4] Ismail, N., Salleh, W., Sazali, N., Ismail, A., Yusof, N., & Aziz, F. (2018)。喷涂法制备圆盘支撑碳膜:碳化温度和气氛的影响。分离与净化技术,195,295-304。[5] Ismail, N., Salleh, W., Sazali, N., & Ismail, A. (2018)。一步涂覆-碳化循环制备圆盘支撑碳膜的开发和表征。工业与工程化学杂志,57,313-321。[6] Sazali, N., Salleh, WN, Nordin, NA, Harun, Z., & Ismail, AF (2015)。基于基质的碳管状膜:聚合物组成的影响。《应用聚合物科学杂志》,132(33)。[7] Sazali, N.、Salleh, W.、Ismail, A.、Kadirgama, K. 和 Othman, F. (2018)。P84 共聚酰亚胺基管状碳膜:加热速率对氦分离的影响。《固态现象》,280,308-311。[8] Sazali, N.、Salleh, WN、Ismail, AF、Wong, KC 和 Iwamoto, Y. (2018)。利用热解方案对 BTDA-TDI/MDI (P84) 聚酰亚胺/纳米晶体纤维素碳膜进行气体分离。 Journal of Applied Polymer Science, 136(1), 46901。[9] Ismail, NH, Salleh, WN, Sazali, Ismail, AF (2017)。中间层对盘式支撑碳膜气体分离性能的影响。分离科学与技术,52(13), 2137-2149。[10] Sazali, N., Salleh, W., Ismail, A., Ismail, N., Yusof, N., Aziz, F., Kadirgama, K. (2019)。中间层对盘式支撑碳膜气体分离性能的影响
对于无肝硬化的 HBeAg 阴性患者,治疗应至少持续到 HBs 血清转换或出现疗效丧失的证据。如果治疗时间超过 2 年,建议定期重新评估,以确认继续选择疗法仍然适合患者。 漏服剂量 如果漏服剂量与通常服药时间相差不到 18 小时,患者应尽快服用替诺福韦艾拉酚胺片 25 mg,然后恢复正常服药计划。如果与通常服药时间相差超过 18 小时,患者不应服用漏服剂量,而应恢复正常服药计划。 如果患者在服用替诺福韦艾拉酚胺片 25 mg 后 1 小时内呕吐,则应服用另一片药片。如果患者在服用替诺福韦艾拉酚胺片 25 mg 后 1 小时以上呕吐,则无需服用另一片药片。特殊人群 老年人 65 岁及以上患者无需调整替诺福韦艾拉酚胺片 25 mg 的剂量(参见 5.2 节)。 肾功能不全 对于估计肌酐清除率 (CrCl) ≥ 15 mL/min 的成人或青少年(年龄至少 12 岁,体重至少 35 kg),或 CrCl < 15 mL/min 正在接受血液透析的患者,无需调整替诺福韦艾拉酚胺片 25 mg 的剂量。在血液透析当天,应在完成血液透析治疗后服用替诺福韦艾拉酚胺片 25 mg(参见 5.2 节)。对于未接受血液透析的 CrCl < 15 mL/min 的患者,无法提供剂量建议(参见 4.4 节)。肝功能损害:肝功能损害患者无需调整替诺福韦艾拉酚胺片25毫克的剂量(参见【用法用量】和【用药】)。儿科人群:尚未确定替诺福韦艾拉酚胺片25毫克对12岁以下或体重<35公斤儿童的安全性和有效性。暂无相关数据。
我强烈反对建造圣胡安卡皮斯特拉诺锂电池厂。该设施将对我们这些在拟建工地附近工作、上学(J. Serra HS)和拥有房屋的人造成严重的火灾隐患,以及相关的公共健康和安全威胁。一旦发生火灾,周围极易燃烧的植被和陡峭的悬崖状地形将导致难以控制的灾难,这将对数千个家庭、公共健康和安全构成严重威胁,并可能导致那些在卡米诺卡皮斯特拉诺和加州公路 I-5(连接洛杉矶和奥兰治县与圣地亚哥县的主要交通走廊/干道)上旅行的人发生极端的交通灾难。请保护我们的社区和居住在这里的数千人,停止建造圣胡安卡皮斯特拉诺锂电池厂!真诚的,克里斯托弗·卡特克
摘要 — 现有的下肢机器人外骨骼控制策略对用户意图的侧重点有所不同,这些意图的分辨率各不相同,从高级目标(提高速度)到中级动作(增加步幅)再到低级关节行为(增加髋关节屈曲)。虽然外骨骼上的传感器只能通过人机界面间接感知人类,但它们在穿戴设备所需的时间方面比更直接的方法更具优势。在本研究中,要求外骨骼用户(包括身体健全和脊髓损伤)改变他们的预期步行速度。机载传感器测量结果用于离线测试基于马哈拉诺比斯距离的意图识别算法。该算法的目标是识别意图变化并正确分类其类型,但不是通过外骨骼实现该变化。该算法正确识别了用户希望以比设备标称速度更快或更慢的速度行走的情况。对于体格健全的受试者,已知意图变化与算法正确识别之间的平均延迟为 0.63 秒。对于体格不健全的受试者,这一延迟平均为 0.93 秒。这些概念验证结果表明,基于马哈拉诺比斯距离的意图识别是可能的,而对该方法的分析表明,还有进一步改进的空间。
斯里文卡特斯瓦拉大学物理系将于 2023 年 8 月 9 日至 10 日举办为期两天的先进材料、设备和技术国际会议 (ICAMDT-2023)。ICAMDT-2023 涵盖先进材料、设备和技术的最新发展,这些发展将影响几乎所有科学和技术领域。会议的主要目标是汇集来自学术界、国家实验室和工业界的科学家和工程师,讨论先进材料、设备和技术的最新发展,并探索在以下领域解决新出现的问题的合作可能性:1.生物材料和生物电子学2.陶瓷、电介质和铁电材料3.无序材料4.磁性材料和自旋电子学5.发光材料和装置6.光纤通信材料7.空间应用材料8.微机电系统9.纳米材料和纳米电子学10.纳米光子学11.光电材料和器件12.聚合物和有机材料13.半导体14.传感器和其他设备15.固态离子材料和装置16.薄膜和相关技术会议将以混合模式举行。
斯里文卡特斯瓦拉大学物理系将于 2023 年 11 月 6 日至 7 日举办为期两天的先进材料、设备和技术国际会议 (ICAMDT-2023)。ICAMDT-2023 涵盖先进材料、设备和技术的最新发展,这些发展将影响几乎所有科学和技术领域。会议的主要目标是汇集来自学术界、国家实验室和工业界的科学家和工程师,讨论先进材料、设备和技术的最新发展,并探索在以下领域解决新出现的问题的合作可能性:1.生物材料和生物电子学2.陶瓷、电介质和铁电材料3.无序材料4.磁性材料和自旋电子学5.发光材料和装置6.光纤通信材料7.空间应用材料8.微机电系统9.纳米材料和纳米电子学10.纳米光子学11.光电材料和器件12.聚合物和有机材料13.半导体14.传感器和其他设备15.固态离子材料和装置16.薄膜和相关技术会议将以混合模式举行。