i生物化学与生物物理学研究所波兰科学学院,波兰,波兰,ii玛丽亚·斯克洛多夫斯卡库里国家肿瘤学国家研究研究所,罗恩特纳5 PotsdamGolm, Germany, V Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria, VI MaxPlanck Institute for Plant Breeding Research, CarlvonLinne Weg 10, Cologne, Germany, VII LeibnizInstitut für Pflanzengenetik und Kulturplfanzenforschung Corrensstraße 3, Gatersleben, Germany, VIII国家巨大的国家主要实验室,生命科学学院,河南大学,河南大学,凯芬,中国,IX生物学系,约克大学,约克大学,英国,X MAXPLANCK植物育种研究所,Carlvonlinee Weg 10,Cologne,德国,德国,德国,
需要进行定量分析和模型,以将植物的细胞组织与其新陈代谢联系起来。但是,定量数据通常散布在多个研究中,发现此类数据并将其转换为有用的信息是耗时的。因此,有必要集中可用数据并突出其余的知识差距。在这里,我们提出了一种逐步的方法,可以从各种信息源中手动提取定量数据,并统一数据格式。首先,对拟南芥叶的数据进行了整理,检查了一致性和正确性,并通过交叉检查来源进行策划。第二,通过应用计算规则将定量数据组合在一起。然后将它们集成到代表Arabidopsis参考叶的独特综合,参考,可重复使用的数据汇编中。该地图集包含在细胞和亚细胞水平的叶片中发现的15种细胞类型的指标。
。cc-by-nc-nd 4.0国际许可证。根据作者/资助者提供了预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月8日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.02.07.636860 doi:Biorxiv Preprint
带有评论[PZ1]:也许从转录调节到重组的过渡更加顺利,您可以写出,这种“本地招聘”不仅导致了基因的转录,而且还会影响减数分裂的交叉形成
通过RNA引导的核酸酶(例如SP Cas9)编辑的基因组编辑,已用于许多不同的植物特种中。然而,尚未得到充分记录在多大程度上可以通过多重独立基因座对准。在这里,我们基于高度内含器优化的ZCAS9I基因开发了一个工具包,该基因允许组装核酸酶构建体,该核酸酶构建体表达高达32个单导RNA(SGRNA)。我们使用此工具包探索了两个主要模型物种中多路复用的限制,并报告了无基因八个八个八杆的分离(8 3)Nicotiana Benthamiana和Duodecuple(12 3)拟南芥Thaliana thaliana突变线(分别是T 1和T 2,分别是T 1和T 2)。我们开发了新的本坦氏菌(N. benthamiana)的新颖的反式标记,最重要的是SL -Fast2,可与良好的拟南芥种子植物植物标记物和FCY-upp相当,并基于在存在先例的情况下产生有毒的5-氟中性含量。用九个不同的sgrNA靶向八个基因,并依靠fcy-upp选择非转基因t 1,我们确定了n。benthamiana突变型的n。benthamiana突变线,并具有惊人的高效效率:所有ana-属于所有基因的植物(大约112/11/11/11 target serited)。此外,我们在A. thaliana的24个sgrnas阵列获得了12个基因。效率在a中的显着较低。thaliana,我们的结果表明CAS9的可用性是这种高阶多路复用应用程序中的限制因素。我们通过表型筛选和扩增子测序的结合来识别十二指肠突变系。所呈现的资源和结果为如何使用多路复用来生成复杂的基因型或在功能上询问候选基因的基团。
非致病细菌可以通过动员和供应养分,保护病原体并减轻非生物胁迫来实质性地促进植物健康。但是,全基因组关联研究的数量报告了对受益微生物群体各个成员的遗传结构的遗传结构。在这项研究中,我们在条件下建立了一项全基因组的关联研究,以估计162个拟南芥的162次植物变异水平和潜在的遗传结构,该拟南芥的加入来自法国西南部的54个自然种群,响应于法国西南部,响应于13种二种菌株的二种菌株,这些菌株与较丰富的非植物构图相同,构成了叶子的隔离,并构成了叶子的隔离,并构成了叶子的分离。 地区。使用高通量表型方法来评分与营养生长相关的特征,在这些物种和菌株
复原 我们建议在打开前先短暂离心此小瓶,使内容物沉至底部。请使用去离子无菌水复原蛋白质至浓度为 0.1-1.0 mg/mL。我们建议添加 5-50% 甘油(最终浓度)并分装以在 -20°C/-80°C 下长期储存。我们默认的甘油最终浓度为 50%。客户可以将其作为参考。
复原 我们建议在打开前先短暂离心此小瓶,使内容物沉至底部。请使用去离子无菌水复原蛋白质至浓度为 0.1-1.0 mg/mL。我们建议添加 5-50% 甘油(最终浓度)并分装以在 -20°C/-80°C 下长期储存。我们默认的甘油最终浓度为 50%。客户可以将其作为参考。
图3•EE应激诱发的凋亡操纵癌细胞的免疫原性。(a)PEPA介导的内糖体应力的示意图调节了癌细胞的免疫原性。潮湿,损伤相关的分子模式。(B-E)蛋白质组学分析对用PEPA介导的EE或LY应激处理的CT26细胞释放的蛋白质水平。 (b)释放蛋白质的维恩图。 (c)PEPA EE应激专门引起的生物过程GO的富集。 (d)由PEPA介导的EE和LY应激诱导的释放蛋白的火山图。 (e)热图和pepa ee和pepa ly之间的蛋白质类型的聚类。 n = 3生物学独立的实验。 (f)用pepa ee或pepa ly胁迫处理后CT26细胞的钙网蛋白(CRT)暴露。 (g)与PEPA EE或PEPA LY处理过的CT26-ova细胞共培养后,在BMDC上,Cotimulation因子(CD80和CD86)(CD80和CD86)和OVA抗原(Siinfekl-h-2k b)的过表达。 通过流式细胞仪量化数据,并将其标准化为PBS治疗。 (h)用pepa ee或pepa ly应激处理的CT26- OVA肿瘤中GSDME裂解和caspase-3激活的免疫印迹。 (i)由pepa ee或pepa ly引起的肿瘤组织的免疫原性(TUNEL,CRT暴露和HMGB1释放)的全面成像。 比例尺= 2 mm。 (j,k)在用pepa ee或pepa ly处理后,从CT26-ova肿瘤小鼠收获的淋巴结中的体内DC激活和OVA的表现。 (J)CD80 + CD86 + DC细胞的百分比,n = 5小鼠。(B-E)蛋白质组学分析对用PEPA介导的EE或LY应激处理的CT26细胞释放的蛋白质水平。(b)释放蛋白质的维恩图。(c)PEPA EE应激专门引起的生物过程GO的富集。(d)由PEPA介导的EE和LY应激诱导的释放蛋白的火山图。(e)热图和pepa ee和pepa ly之间的蛋白质类型的聚类。n = 3生物学独立的实验。(f)用pepa ee或pepa ly胁迫处理后CT26细胞的钙网蛋白(CRT)暴露。(g)与PEPA EE或PEPA LY处理过的CT26-ova细胞共培养后,在BMDC上,Cotimulation因子(CD80和CD86)(CD80和CD86)和OVA抗原(Siinfekl-h-2k b)的过表达。通过流式细胞仪量化数据,并将其标准化为PBS治疗。(h)用pepa ee或pepa ly应激处理的CT26- OVA肿瘤中GSDME裂解和caspase-3激活的免疫印迹。(i)由pepa ee或pepa ly引起的肿瘤组织的免疫原性(TUNEL,CRT暴露和HMGB1释放)的全面成像。比例尺= 2 mm。(j,k)在用pepa ee或pepa ly处理后,从CT26-ova肿瘤小鼠收获的淋巴结中的体内DC激活和OVA的表现。(J)CD80 + CD86 + DC细胞的百分比,n = 5小鼠。(k)抗原阳性DC中的siinfekl显示,n = 4小鼠。(l)在不同治疗后(n = 5小鼠)后CT26-ova肿瘤轴承小鼠中的特定细胞杀死研究。(M)在用CT26细胞重新收集CT26肿瘤的PEPA EE或PEPA LY治疗的含有肿瘤的小鼠中。n = 6鼠;对数秩测试; wt- pepa ee与wt- pepa ly的p = 0.0061。所有数据均表示为平均值±S.D.,所有测量(N)在生物学上都是独立的。