2.2. 功能要求。VAB 必须包括车辆约束机制,以使失控车辆减速并停止。约束机制必须至少由约束网两侧的两个能量吸收装置组成。这些装置必须可手动从混凝土锚固装置上拆卸,以更换损坏的拖网 VAB。这些装置必须与升降机构一起移动以打开或关闭道路,并具有双向车辆停止能力。约束网必须具有高强度的冲击能力,并在网的两侧附有反光停车标志。网必须捕获车辆并将冲击力传递到能量吸收装置。
DSA Digital Signature Algorithm ECDH Elliptic Curve Diffie-Hellman ECDSA Elliptic Curve Digital Signature Algorithm EUF-CMA Existential Unforgeability under Chosen-Message Attack FFDH Finite-Field Diffie-Hellman FIPS Federal Information Processing Standard HPKE Hybrid Public-Key Encryption IETF Internet Engineering Task Force IKE Internet Key Exchange IND-CCA Indistinguishability under Chosen-Ciphertext Attack IND-CPA Indistinguishability under Chosen-Plaintext Attack IRTF Internet Research Task Force KDF Key Derivation Function KDFEM Key Derivation Function Encapsulation Mechanism KEM Key Encapsulation Mechanism LMS Leighton-Micali Signature ML-DSA Module-Lattice-based Digital Signature Algorithm ML-KEM Module-Lattice-based Key Encapsulation Mechanism OW-CCA One-Way under Chosen-Ciphertext Attack OW-CPA One-Way under Chosen-Plaintext Attack PKCS Public-Key Cryptography Standards PRF Pseudo-Random Function RSA Rivest-Shamir-Adleman S/MIME Secure/Multipurpose Internet Mail Extensions SIKE Supersingular Isogeny Key Encapsulation SLH-DSA Stateless Hash-based Digital Signature Algorithm SSH Secure Shell SSL Secure Sockets Layer TLS运输层安全UOV UOV不平衡的油和醋XMSS扩展Merkle签名方案
3D three-dimensional 6DoF six Degrees of Freedom AGGN AGGregation Network AI Artificial Intelligence AOA Angle Of Arrival AP Access Point API Application Programming Interface APP APPlication AR Augmented Reality B2B Business to Business BC Business Continuity BNG Broadband Network Gateway BoD Bandwidth on Demand BSS Basic Service Set BYOD Bring Your Own Device CAPEX CAPital EXpenditure CO Central Office CPE Customer Premise Equipment CPN Customer Premise Network CPU中央处理单元CSMA载体感知多访问DBA动态带宽分配DC数据中心DCN数据通信网络DCSW DADA中心开关DDS数据分布DDD DATA分布DR灾难恢复DTU分配终端E2E END EMS EMS EMES EMELS MANELES MANCEMES ENU系统E-ONU ENU e-ONU ENU E-ONU F5G FIF 5G FIF FIF 5G FIFTH IDECTENT FIFT固定网络固定网络固定网络固定网络固定FIBER FIBER FIBER FIBER FIBER FIBER FIER fIFM fibr finm光学添加/DROP多路复用器FTTR FTTR纤维到房间FTU进料器终端单元GIS地理信息系统GPU图形处理单元GUI图形用户界面ICT信息通信信息通信技术IOT Internet Internet Internet Internet Internet Internet Internet Internet协议I Internet Internit
MDA 正在开发一种新型、性能更强大的 GMD 拦截器,称为下一代拦截器 (NGI),以应对不断演变的威胁并增强并最终取代老化的地基拦截器。据美国北方司令部称,NGI 是国土导弹防御的优先事项,需要在 2028 财年或更早开始初步部署。3 国会还指出,国防部需要确保 NGI 得到严格的技术和采购监督,并在项目早期降低风险。4 国防部对此作出了部分回应,对该项目进行了独立的技术风险和成本评估。例如,国防部成本评估和项目评估主任 (CAPE) 估计,设计、开发、生产、运行和维持 20 个生产单元 NGI 和额外测试件的初始能力的总成本将超过 170 亿美元。NGI 也是 MDA 正在开发和管理的第一个项目
量子密码学是一个新兴的、令人兴奋的领域,它利用量子物理学来保护通信线路不被监视或拦截。该领域的基本思想,如不确定性原理和量子纠缠的事实,被用于实现前所未有的安全级别。我们的深入研究“量子密码学:安全通信协议的数学基础和实际应用”研究了量子密码协议背后的数学原理以及它们在现实世界中的应用。我们的研究详细介绍了量子密码学背后的理论。它解释了量子密钥分发 (QKD)、量子隐形传态和量子安全直接通信 (QSDC) 等思想。量子密码学背后的主要思想之一是量子比特的概念,它们就像常规比特,但属于量子力学。由于叠加,它们可以同时处于多个状态。量子密码学方法利用这一特性,通过将数据置于量子态并利用量子测量本质上不可预测的事实来确保通信的安全。我们正在进行的研究着眼于如何在典型的日常情况下使用量子密码学。我们研究了在尝试构建量子传输基础设施时出现的问题,例如噪声、退相干和规模。我们制定了计划,通过提供有关如何设置实验以及技术如何改进的详细信息,来构建强大而值得信赖的量子密码系统。我们的研究探讨了量子密码学如何用于除确保通信安全之外的其他领域。我们研究了它对量子网络、量子计算和安全多方处理等新技术的意义。我们希望通过解释量子密码学的更大影响,鼓励人们在这个突破性领域进行更多的研究和提出新想法。
无人机和巡飞弹(又称“自杀无人机”)对武装部队构成了重大挑战,最近的冲突就是明证。其中一个例子就是 HESA Shahed 136,这是一种低成本、高耐久性的巡飞弹,具有大载荷能力和精确打击能力。当前针对中短程空中威胁的系统大多依赖于传统的防空系统设计。这些系统是为了摧毁战斗机或直升机而开发的。因此,它们对付作战无人机的性能非常差,而且成本过高。另一方面,提供成本效益高的效应器的枪基系统射程有限,命中率低。最糟糕的情况是一群低成本无人机发动饱和攻击。
图 3 显示,在 PACE 下,大约 61% 的搜查是针对毒品。这一比例低于截至 2022 年 3 月的一年中 65% 的搜查比例,并且逆转了每年为寻找毒品而进行的拦截搜查比例增加的趋势。毒品搜查的比例和次数在 2018 年 3 月至 2021 年 3 月期间稳步增加,但此后有所减少(内政部,2023 年)。大多数毒品搜查都是针对持有(供个人使用),而不是针对更严重的持有意图供应的罪行(HMICFRS,2021 年)。截至 2023 年 3 月的一年中,对涉嫌持有被盗财产或携带用于偷窃的装备的人的搜查比例略有增加,对“其他”类别(包括持有烟花)的搜查也有所增加。在此期间,对攻击性武器、被盗财产、携带装备、刑事破坏和其他罪行(如持有烟花)的搜查次数也有所增加。
作为无人驾驶汽车(通常称为无人机的无人机)的流行,人们对潜在滥用行为的担忧已经变得更加实际。无人机安全领域的新兴挑战之一是入侵无人机的拦截,尤其是当他们的存在可能导致伤害或违反法律时。拦截不合作的无人机需要复杂的处理,而该技术的一个有前途的分支涉及部署Interceptor无人机。为此,必须使用一种快速,强大的计划拦截轨迹的方法。在本文中,基于模型预测控制(MPC)基于基于基于的轨迹计划者(RL)控制策略。在模拟中评估,比较并测试了它们的效果,速度和鲁棒性。基于MPC的计划者还在现实世界中进行了测试。
•在1990年初Web流量的层安全性-NSA接受其出口,其键尺寸短-40位•在90年代的美国行业中,它被阻止使用高质量加密导出产品,而国外竞争对手可以使用它,因为它已知并作为开源。
石油平台、管道或港口设施等关键海上基础设施具有战略意义,而且本质上难以保护。对这些设施的攻击将带来可怕的后果。国际安全环境和能源格局的重大变化引起了越来越多的战略关注,从而产生了务实的能源安全议程,为盟国和伙伴国家提供了切实的附加价值。正如北约 2022 战略构想所述,盟国将投入其能力来准备、阻止和防御强制性能源使用。如今,北约的首要任务是能源安全和保护海面或海面下的关键基础设施,特别是因为俄罗斯利用能源作为实现政治目标和支持其外交政策的手段。