大脑计算机界面(BCI)系统为严重运动残疾患者提供了替代通信通道,可以使用无肌肉运动与环境互动。近年来,与最经常研究的基于BCI的拼写范式相比,对非目光依赖的脑部计算机界面范式的研究的重要性一直在增加。在RCP范式下已经验证了用于通信目的的几种视觉修改尚未在最扩展的非目光依赖的快速串行视觉呈现(RSVP)范式下进行验证。因此,在本研究中,根据RSVP评估了三组不同的刺激,并具有以下交流特征:白色字母(WL),著名面部(FF),中性图片(NP)。11个健康受试者参加了该实验,其中受试者必须经历校准阶段,在线阶段以及最终的主观问卷完成阶段。结果表明,FF和NP刺激在校准和在线阶段促进了更好的性能,在FF范式中稍好。关于主观问卷,与WL刺激相反,参与者再次首选FF和NP,但这次NP刺激得分略高。这些发现表明,与最常用的基于字母的刺激相比,将FF和NP用于基于RSVP的拼写器可能是有益的,可以提高信息传输速率,并且可以代表具有改变眼运动功能的个人的有希望的通信系统。
1教育部图像处理和智能控制的主要实验室,人工智能与自动化学院,华恩科学技术大学,武汉430074,中国; 2华盛科技大学土木工程与力学学院,中国武汉430074; 3工程与信息技术学院人工智能中心,悉尼科技大学,悉尼,新南威尔士州,2007年,澳大利亚; 4美国加利福尼亚州加利福尼亚大学圣地亚哥分校神经计算学院Swartz计算神经科学中心,美国加利福尼亚州92093,美国; 5美国加利福尼亚州加利福尼亚大学圣地亚哥大学医学工程学院高级神经工程中心,美国加利福尼亚州,加利福尼亚州92093,美国和6 Zhaw Datalab,ZéurichApplied Sciences of Applied Sciences,Winterthur 8401,瑞士,
脑机接口 (BCI) 拼写器允许严重运动障碍的患者使用他们的大脑活动进行交流,而无需肌肉活动。广泛研究的基于 P300 的 BCI 拼写器的不同视觉配置已在健康和运动障碍用户中进行了评估。但拼写器大小(以厘米为单位)仅针对健康受试者进行了评估。我们认为拼写器大小可能会限制一些头部和眼球运动受限的严重运动障碍患者。针对七名患有肌萎缩侧索硬化症 (ALS) 的患者和一名患有杜氏肌营养不良症 (DMD) 的参与者评估了三种拼写器尺寸的可用性。这是首次对严重运动障碍参与者进行拼写器尺寸可用性评估。中等拼写器的有效性(在线结果中)和效率(工作量测试中)明显更好。中等尺寸拼写器的满意度明显最高,小尺寸拼写器的满意度最低。这些结果与之前在健康受试者中描述的发现相一致。总之,在设计拼写器范例时应考虑拼写器的大小,尤其是对于运动障碍人士,因为它可能会影响他们在控制 BCI 拼写器时的表现和用户体验。
前缀是添加到单词开头的一组字母。前缀 mis- 通常具有否定含义,例如,在“spell”后面添加“mis”(misspell)表示您没有正确拼写单词。
脑机接口 (BCI) 是一种允许人们绕过周围神经系统 (PNS) 的自然神经肌肉和激素输出与环境互动的系统。这些接口记录用户的大脑活动并将其转换为外部设备的控制命令,从而为 PNS 提供额外的人工输出。在此框架中,基于 P300 事件相关电位 (ERP) 的 BCI 已被证明特别成功且稳定,ERP 代表特定事件或刺激后从大脑记录的电反应。通过分类算法确定 EEG 特征中是否存在 P300 诱发电位。线性分类器(例如逐步线性判别分析 (SWLDA) 和支持向量机 (SVM))是 ERP 分类中最常用的判别算法。由于 EEG 信号的信噪比较低,因此需要执行多个刺激序列(即迭代),然后取平均值,然后对信号进行分类。然而,虽然增加迭代次数可以提高信噪比 (SNR),但也会减慢该过程。在早期的研究中,迭代次数是固定的(不停止),但最近,文献中提出了几种提前停止策略,以便在满足某个标准时动态中断刺激序列,以提高通信速率。在
摘要在本文中,我们提出了一种基于P300电位的拼写器中训练分类器的新方法。基于自举的方法是生成新样本的已知策略,但很少在神经科学中使用。该研究首先证明了分类任务的性能(检测P300和非P300类)如何在传统方法中是最佳的。然后,提出了一种从培训数据中获取新样本的新方法。使用单个P300和非P300样品的平衡子组对每个分类器进行重新训练。使用16个脑电图通道从14个健康受试者中收集数据。将这些被过滤在带通中并破坏。随后,使用传统方法随后训练了四个线性分类器,其拟议中的一个分类器,每班有1000、2000和3000个样本。结果表明,使用建议的方法对判别性分类器的准确性和歧视能力有所提高,并在培训数据和测试数据之间保持相同的统计属性。相比之下,对于生成分类器,结果没有显着差异。因此,强烈建议使用拟议的方法来训练基于法术的P300电位中的判别分类器。
摘要 在本文中,我们提出了一种基于 P300 电位的拼写器分类器训练新方法。该方法基于引导,是一种已知的生成新样本的策略,但在神经科学中很少使用。该研究首先展示了传统方法中分类任务(检测 P300 和非 P300 类别)的性能可能不是最优的。然后,提出了一种从训练数据中抽取新样本的新方法。使用单个 P300 和非 P300 样本的平衡子组重新训练每个分类器。使用 16 个脑电图通道从 14 名健康受试者收集数据。这些数据经过带通滤波和抽取。随后,使用传统方法训练四个线性分类器,然后使用所提出的方法,每个类别有 1000、2000 和 3000 个样本。结果表明,使用所提方法,判别分类器的准确率和判别能力有所提高,同时保持了训练数据和测试数据之间的相同统计特性。相比之下,对于生成分类器,结果没有显著差异。因此,强烈建议使用所提方法训练基于拼写的 P300 电位的判别分类器。