从测量开始时关于测量系统的量子状态的连续测量记录可以获得哪些知识?量子状态改编的任务是更为常见的状态预测的倒数,在量子测量理论中通过回顾性积极算法值(POVM)严格解决。此通用框架的介绍介绍了其使用连续的同伴测量值回顾高斯量子状态的实用配方,并将其应用于光学机械系统。我们在常见的光学机械操作模式中识别并表征具有共振或异位驱动场以及同源振荡器局部振荡器频率的特定选择。,我们证明了对机械振荡器正交的近考虑测量的可能性,从而直接访问给定时间的振荡器的位置或动量分布。这构成了完全量子状态层析成像的基础,尽管以破坏性的方式。
可调振荡器的闪烁噪声是一个特殊问题,需要使用可调振荡器来捕获接收信号。直接数字合成 (DDS) 为这个问题提供了一个现成的解决方案,但可能会引入不需要的杂散信号产物。本文介绍了一种将这些产物降低到普遍令人满意的水平的新型专利方法,这确保了所提出的新型集成发射机合成器方法的可行性。为了在微波频率下从 DDS 提供合成的本地振荡器,必须使用一些额外的技术。本文介绍了一种使用阶跃恢复二极管 (SRD) 的方法。本文介绍了一项深入研究,表明
内部振荡器电路用于生成设备时钟。设备需要执行指令和外围设备时钟。四个设备时钟周期生成一个内部指令时钟(TCY)周期。振荡器可能具有多达八种不同的模式:
这个新颖的界面具有振荡器和桥梁的良好特征:它很简单,并且具有彼此独立的输出信号频率和振幅,就像放松振荡器一样。在频率中而不是在振幅中,对电磁干扰的免疫力增加。由于其不同的性质,该界面允许与桥电路相似的函数。此外,频率以与谐波振荡器的振幅相似的方式理想地增加到无穷大。渐近线的位置与k的值无关,但可以通过调整r t,c l和r3来移动。通过在高频上工作,传感器也可以非常敏感,即使对于具有较大RE的线圈,例如平坦或微型卷曲的线圈。
摘要 — 偏置温度不稳定性 (BTI) 和热载流子退化 (HCD) 是主要的老化机制,经常通过晶体管测量或基于反相器 (INV) 的环形振荡器 (RO) 测量进行研究。然而,大规模数字电路通常用标准单元(如逻辑门)制造。在可靠性模拟流程中(例如,基于 SPICE 的标准单元特性与退化晶体管)必须对标准单元做出许多假设(例如负载电容、信号斜率、老化模型的不确定性等),并且可能导致较高的模拟不确定性。在这项工作中,我们建议用硅中的标准单元振荡器测量来验证这种标准单元特性。为此,我们提出以下新颖的贡献:1)首次基于从处理器中提取的逻辑路径对异构振荡器(一个 RO 中的多种不同单元类型)进行 BTI 和 HCD 测量。 2) 第一项工作探索了 BTI 和 HCD 对包含组合标准单元的振荡器的影响,即包含多个逻辑门的单个单元(例如与-或-反相器 (AOI) 单元和或-与-反相器 (OAI))和执行复杂操作(例如全加器)的单元。
军事和航空电子应用 Q-Tech 提供最先进的混合晶体振荡器,适用于高可靠性军事、航空航天、井下和深空应用。我们提供完整的振荡器和晶体制造能力,从标准时钟振荡器到 RAD 硬空间额定 XO、TCXO、OCXO 和 SAW 振荡器。Q-Tech 的所有产品均符合我们非常高的设计、质量、准时交货和卓越客户服务标准。我们致力于为客户提供领先的频率控制解决方案。Q-Tech Corporation 提供一系列新的微型振荡器,采用 2.5 x 3.2mm、3.2 x 5mm 和 5 x 7mm 封装。这些微型振荡器有多种配置(XO、TCXO、VCXO)和逻辑类型(CMOS、PECL/LVDS、削波正弦波),将为 Q-Tech 客户提供迄今为止最小的选项,涵盖 -55C 至 +125C 的军用温度范围。此外,许多标准频率的 XO 都有库存,因此我们能够以最低的交货时间提供最常订购的频率。高温应用 Q-Tech 是井下和喷气发动机控制应用高温晶体振荡器的领导者。我们的高温产品均经过严格鉴定,并按照最高标准进行测试。我们继续推动最先进的技术,以提供更小尺寸的封装、更低的功率和电流要求以及实时时钟模块。我们的产品与竞争对手的不同之处在于我们出色的可靠性、性能和质量。
可调振荡器的闪烁噪声是一个特殊问题,而可调振荡器是捕获接收信号所必需的。直接数字合成 (DDS) 为这个问题提供了一个现成的解决方案,但可能会引入不需要的杂散信号产物。本文介绍了一种将这些产物降低到普遍令人满意的水平的新型专利方法,该方法确保了所提出的新型集成发射机合成器方法的可行性。为了在微波频率下从 DDS 提供合成的本地振荡器,必须使用一些额外的技术。本文介绍了一种使用阶跃恢复二极管 (SRD) 的方法。本文介绍了一项深入研究,表明
振荡是跨尺度的生物系统中的复发现象,包括昼夜节律,代谢振荡和胚胎遗传振荡剂。尽管在生物学上具有基本意义,但由于遗传网络的多阶段复杂性和体内扰动生物的难度,生物振荡器的解密核心原理非常具有挑战性。在这项研究中,我们通过重新设计了良好的特征化的合成振荡器(称为“抑制剂”)来应对这一挑战,并在大肠杆菌中使用光遗传学控制了这一挑战,从而引入了“光速器”。当我们施加周期性的脉冲时,光消电器的表现为强制振荡器。携带合成振荡器的细菌菌落表现为空间环模式。利用此功能,我们系统地研究了不同暴露方式下环的数量,强度和清晰度。通过将实验方法与数学建模整合在一起,我们表明,这种简单的振荡电路可以生成复杂的动力学,这些动力学取决于外部周期强迫,将其转变为不同的空间模式。我们报告了同步,共振,底色和周期加倍的观察。此外,我们提供了支持混乱政权存在的证据。这项工作强调了合成振荡器可访问的复杂时空模式,并强调了我们方法在理解有关生物振荡的基本原理方面的潜力。
高温电子技术发展迅速,广泛应用于发动机控制、能源勘探和工业过程控制。除了 150°C 以上硅基微电子设计和构造方面的挑战外,石英晶体振荡器还带来了一系列独特的设计复杂性。传统石英振荡器在 125°C 以上时表现出明显的频率与温度依赖性,而 CTE 不匹配引起的应力会产生额外的频率扰动。除了高温之外,许多此类应用还会使振荡器受到极端冲击和振动。Microchip 的设计和工艺工程师团队已经开发出专有解决方案来应对这些挑战,从原始石英的加工开始,到电子设计,再到整个组装所需的封装和互连技术。
量子电池是用于存储能量的量子系统,以稍后由外部代理以工作形式提取以执行某些任务。在这里,我们通过通过反谐波拉曼构型获得的反杰伊斯卡明斯相互作用介导的碰撞模型来研究混合量子电池的充电。电池由两个不同的组件组成:固定的无限尺寸单量子系统(例如谐波振荡器)和小尺寸的流(例如Qutrits)。充电协议包括在外部能源的作用下,一次将谐波振荡器与流的每个元素与流的每个元素相互作用,而目标是分析谐波振荡器和QUTRIT的充电如何受流的相关性能的影响。