振荡是跨尺度的生物系统中的复发现象,包括昼夜节律,代谢振荡和胚胎遗传振荡剂。尽管在生物学上具有基本意义,但由于遗传网络的多阶段复杂性和体内扰动生物的难度,生物振荡器的解密核心原理非常具有挑战性。在这项研究中,我们通过重新设计了良好的特征化的合成振荡器(称为“抑制剂”)来应对这一挑战,并在大肠杆菌中使用光遗传学控制了这一挑战,从而引入了“光速器”。当我们施加周期性的脉冲时,光消电器的表现为强制振荡器。携带合成振荡器的细菌菌落表现为空间环模式。利用此功能,我们系统地研究了不同暴露方式下环的数量,强度和清晰度。通过将实验方法与数学建模整合在一起,我们表明,这种简单的振荡电路可以生成复杂的动力学,这些动力学取决于外部周期强迫,将其转变为不同的空间模式。我们报告了同步,共振,底色和周期加倍的观察。此外,我们提供了支持混乱政权存在的证据。这项工作强调了合成振荡器可访问的复杂时空模式,并强调了我们方法在理解有关生物振荡的基本原理方面的潜力。
主要关键词