然而,预计未来几年 MIR PIC 将大幅增长,这主要归功于气体检测、生物系统、安全和工业应用传感器的发展 [https://mirphab.eu]。MIR 中的 PIC 需要能够在 MIR 波长范围内工作的新设备,因此很可能基于新的材料平台。[8] 光电探测器就是这样一种设备,它将光信号转换为电信号,是片上光电转换中必不可少的组件。然而,它必须满足几个重要要求,例如与互补金属氧化物半导体 (CMOS) 技术的兼容性、在很宽的波长范围内工作以及无需冷却,这会增加系统的复杂性和成本。[6] 相比之下,大多数先前提出的 MIR 波长范围内的光电探测器要么制造成本高,要么不能在很宽的波长范围内工作,要么不切实际,因为它们需要冷却到低温。因此,对 MIR 光电探测器的搜索仍在进行中。解决方案可能是将热量转化为电能的热探测器。[10 – 14] 它们需要一种吸收材料,吸收光以产生热载流子,然后将其转化为电能。透明导电氧化物 (TCO) 属于近零 (ENZ) 材料,似乎是完成此类任务的绝佳材料,因为它们可以在很宽的范围内吸收能量
警告。访问本论文内容的前提是接受以下知识共享许可规定的使用条款:https://creativecommons.org/licenses/?lang=ca
摘要 关于碳纳米管-硅 MIS 异质结构的新研究表明,可利用器件绝缘层中厚度的不均匀性来增强其功能。在这项工作中,我们报告了一种器件的制造和特性,该器件由 n 型硅衬底上的单壁碳纳米管 (SWCNT) 薄膜组成,其中纳米管和硅之间的氮化物中间层已被刻蚀以获得不同的厚度。三种不同的氮化硅厚度允许在同一器件内部形成三个区域,每个区域都有不同的光电流和响应度行为。我们表明,通过选择特定的偏置,可以打开和关闭区域的光响应。这种特殊行为使该器件可用作具有电压相关活性表面的光电探测器。在不同偏置下对器件表面进行的扫描光响应成像突显了这种行为。
在当今数据驱动的教育技术中,算法对学生的体验和成果产生了关键的影响。因此,采取措施最小化偏见,避免永久性或加剧不平等至关重要。在本文中,我们研究了两个学习分析模式中存在算法偏见的程度:基于贝叶斯知识追踪(BKT)和粗心大意探测器的知识估计。使用来自美国各地使用的学习平台的数据,我们探索了三种不同的方法,探索算法偏差:1)分析样本中每个人口统计组的模型的表现,2)比较这些人口统计学的相互群体的性能,以及这些模型在使用特定组的模型中是否可以在训练过程中进行培训,以观察到训练的过程。我们的实验性研究表明,这些模型的性能在所有人口统计和交叉组中都接近平等。这些发现建立了验证交叉组的教育算法的可行性,并表明这些算法可以公平地用于大规模的不同学生。
本研究报告了对凸块金属化下 Ti/Pt/Au 上放置的铟微凸块/柱内部均匀性的研究。这对于连接电阻率、长期耐用性和后续混合工艺(例如芯片键合)非常重要。金与铟发生反应,形成具有与纯铟不同的化学物理参数的金属间合金。根据透射电子显微镜图像分析了金属间合金的几何和结构参数。使用透射电子显微镜和能量色散谱法确定所研究样品中元素的分布。未退火(A)和退火(B)铟柱中的金属间合金厚度分别为 1.02 μm 和 1.67 μm。两个样品均观察到合金的层状和柱状内部结构,样品 B 中的晶粒大两倍。检测到未退火 In 柱的 Au-In 金属间合金的分级化学成分,而退火样品 B 的恒定成分为 40% Au 和 60% In。原子分布对 In 柱的机械稳定性影响较小。对于厚度为 1.67 μm 的均匀柱状金属间合金结构,直径为 25 µm、高度为 11 µm 的 In 柱的产率可能超过 99%。
III-V 胶体量子点 (CQD) 在红外光电探测中备受关注,CQD 合成和表面工程的最新发展提高了性能。本文研究了光电探测器的稳定性,发现锌离子从电荷传输层 (CTL) 扩散到 CQD 活性层会增加其中的陷阱密度,导致操作过程中性能快速且不可逆地下降。为了防止这种情况发生,本文在 CQD 和 ZnO 层之间引入了有机阻挡层;但这会对设备性能产生负面影响。然后,该设备允许使用 C60:BCP 作为顶部电子传输层 (ETL) 以获得良好的形态和工艺兼容性,并选择 NiO X 作为底部空穴传输层 (HTL)。第一轮基于 NiO X 的设备表现出高效的光响应,但由于针孔而存在高漏电流和低开路电压 (Voc)。本研究将聚[双(4-苯基)(2,4,6-三甲基苯基)胺] (PTAA) 与 NiO X NC 结合形成混合 HTL,这种添加可减少针孔形成、界面陷阱密度和双分子复合,从而增强载流子收集。光电探测器在施加 1 V 偏压时在 970 nm 处实现 53% 的外部量子效率 (EQE),并且在连续照明操作 19 小时后仍保持 95% 的初始性能。光电探测器在货架储存 80 天后仍保持 80% 以上的性能。
摘要:在本文中,我们探讨了生成机器学习模型作为计算昂贵的Monte Carlo(MC)模拟的替代品的潜力,该模拟(MC)模拟了大型强子撞机(LHC)实验通常使用的。我们的目标是开发一个能够有效地模拟特定粒子可观察物的检测器响应的生成模型,重点关注同一事件中不同颗粒的检测器响应之间的相关性并适应不对称的检测器响应。我们基于掩盖自回归流链的条件归一化流量模型(CNF),有效地结合了条件变量和高维密度分布。我们使用在LHC上对偶发事件的Higgs玻色子腐烂样品进行了模拟样本评估CNF模型的性能。我们使用涂抹技术创建重建级别的可观察力。我们表明,有条件地归一化的流可以准确地对复杂的检测器响应及其相关性进行建模。此方法可以潜在地减少与生成大量模拟事件相关的计算负担,同时确保生成的事件满足数据分析的要求。我们在https://github.com/allixu/normalizing_flow_flow_for_detector_response
红外 (IR) 探测技术的发展主要依赖于 InAs/GaSb SL 外延 [1] 和生长后处理 [2] 的改进。为了实现最佳性能,必须优化器件架构 [3] 以及台面结构,使其侧壁垂直且光滑,以防止像素间距较小的焦平面阵列 (FPA) 中的串扰,其中周长与表面积的纵横比很高 [2, 4]。表面台面的粗糙度、反应产物的存在以及电活性缺陷的表面密度(包括断裂的化学键)都会影响表面漏电流的大小 [5]。台面型结构可以通过湿法或干法蚀刻来创建。先前的研究表明,无机和有机酸性蚀刻剂都适用于 InAs/GaSb 超晶格 (SL) 的湿法蚀刻 [5, 6]。湿法蚀刻有许多优点,例如断裂的化学键数量少、自由载流子密度降低,因此漏电流低 [6, 7]。然而,也会产生不良反应产物并残留在侧壁表面上,导致漏电流的显著增加。湿法蚀刻也是各向异性的,导致台面侧壁几何形状不理想 [8]。另一方面,InAs 和 GaSb 材料的干法蚀刻经常使用气态氯与惰性气体(如氩气)的组合 [9, 10]。气态氯因其高挥发性和高蚀刻速率而受到青睐,而氩离子通过轰击蚀刻表面简化了反应产物的解吸。BCl 3 蚀刻具有较低的蚀刻速率,但使用它会产生更光滑的台面侧壁 [11]。BCl 3 /Ar 等离子体的使用已被证明在分立探测器中是有效的。尽管如此,当用于台面时,它表现出次优性能
X射线源在强度和时间域都继续前进,从而开放了分析物质结构和特性的新方法,前提是可以有效地记录所得的X射线图像。从这个角度来看,我们关注像素区域X射线检测器的特定局限性。尽管像素区域X射线检测器也在近年来进步,但许多实验仍然受到限制。特别是,需要以GHz速率获取连续图像的检测器;在同一图像中以数百kHz的帧速率在同一图像中可以准确测量单个光子和数百万光子的检测器;并有效地捕获了非常硬X射线的图像(20 keV至数百keV)。最新检测的数据量和数据速率超过了大多数实用的数据存储选项和读取带宽,因此需要在线处理数据或代替全帧全帧读数。
常规的超导电子[1]依赖于超导电线和不同类型的弱环节的超电流和准粒子电流转移的相结合。这些组合可以实现各种功能性IES,例如磁力测定法[2],电流或电压放大器[3],电压标准标准[4],以及基于电阻[5]的检测器或依赖于系统的非平衡状态的电感[6]。与他们的半导体库型相比,超导电子设备缺乏基本元素:非二极管设备,例如二极管或热电元素。不存在非股骨能力可以归因于超导状态的内在电子 - 孔对称性。然而,这种对称性可以使用磁和超导元件的组合[7,8],从原则上讲,它可以实现强大的非重生或功绩的热电图。这些现象可用于创建超导旋转隧道二极管[9],用于超导逻辑和低温记忆的构件,或诸如超导向器 - forromagnet热磁性检测器(Suptrops-Inctife in Astrackect in Astrocke in Astrops-Ickmicys)的新颖类型的检测类型,例如超过forromagnet theroeecnet theroelec-teric tric检测器[10] ],例如,在安全成像中使用了Terahertz-radadiation感测[12]。非常明显,在SFTED中,吸收的辐射直接生成所需的测量信号,而无需单独的偏置电流或电压。