摘要:红外辐射是一种波长介于可见光和微波之间的电磁波,人眼无法看见。这种辐射必须转化为其他物理上可量化的性质才能被探测和测量,才能确定它是否存在、强度如何。红外探测器是将入射红外光信号转化为电信号输出的工具。随着红外探测器在各国的广泛应用,对红外探测器提出了更高的要求。为了进一步拓展波长、提高分辨率、降低成本,基于Ⅱ类超晶格、胶体量子点、硅基材料等新材料、新技术的红外探测器得到了发展。本文综述了国内外红外探测器的发展情况,报道了红外探测器的新材料、新技术。讨论了当前红外探测器研究的局限性和优势,展望了红外探测器未来的发展趋势。此外,概述了红外探测器的最新进展。介绍了基本机制。然后,介绍了材料纳米线、HgCdTe、HOT 和 InAs/InGaAs。最后,展示了进一步的应用。
来自恒定水头源的流量被输送到皮托管的静压端口和总水头端口。此流量在操作期间提供对皮托管的连续反冲洗。反冲洗是必要的,以保持皮托管和连接管内已知密度的流体(或在这种情况下为固体水)。用于反冲洗的恒定水头供应压力必须大于流量中要测量的最大预期速度水头。背压由压力调节计设定。每个端口的反冲洗流速由低流量转子流量计控制。通过实验室测试,选择了空气中 3.79 1/hr 的反冲洗流速。此流速是可以通过的最小流速,并且仍可在空气中产生从皮托管端口连续流出。7.57 和 11.36 1/小时的反冲洗流速也产生了良好的结果;然而,较低的流速提供了更好的仪器低端灵敏度。
MicroGe 探测器是一款紧凑型电冷却、无风扇、轻便的高纯锗探测器 (HPGe)。这款先进的探测器冷却时间短,可在 30 分钟内完成光谱测量,同时保留实验室级探测器的优势。这意味着伽马射线能量从约 10 keV 到几 MeV 具有出色的能量分辨率。此外,MicroGe 超高真空技术提供了无热循环探测器:MicroGe 探测器可以根据需要打开和关闭,而无需经历整个耗时的热循环直至室温。这是一项有效的省时功能,可优化 MicroGe 探测器的使用。
•2021:在ESPPU之后,重点转移到FCC-EE:适合Lepton Collider实验的Noble-liquid ECAL概念,绩效研究表明,与其他建议相比,它非常有竞争力(SI/W,双读数)
欧洲标准 Impaq 玻璃破碎:PD 6662 和 EN 50131 3 级环境等级 II。符合欧盟 (EU) 电磁兼容性 (EMC) 指令 89/336/EEC(经 92/31/EEC 和 93/68/EEC 修订)。经 BS EN 55022 B 级和 BS EN 50130-4 : 1996 批准。CE 标志表明本产品符合欧洲安全、健康、环境和客户保护要求。Texecom 产品受英国和国际专利、商标和注册设计权保护。英国注册设计编号 2105723。© 2009 Texecom Limited。(LIT-0022)
纵观激光粒度测量的发展历史,曾使用过许多光源作为粒子入射光的光源。其中最流行的是激光器。20 世纪 70 年代初,Microtrac 使用氦氖气体激光器作为准直相干光源,该光源提供近乎单一波长,是光散射粒度测量所必需的。电子技术的进步导致了半导体激光器(俗称激光二极管)的发展。因此,在 20 世纪 80 年代中期,Microtrac 开始使用这些类型的激光器,以便为客户提供长寿命稳定性和应用,从而降低服务要求和维护成本。毫无疑问,Microtrac 已证明这些设备具有极高的可靠性和稳定性。1990 年,随着超细粒度分析仪 (UPA) 的出现,它们被广泛使用,并扩展到采用动态光散射测量纳米颗粒的现代 Nanotrac 型号。本文解答了粒度人员考虑激光器类型时经常出现的问题。它还试图解决合理的光学设计原理和技术知识如何解决仪器设计过程中的问题。
1 中国科学院高能物理研究所,北京 100049;tanyuhang@ihep.ac.cn (YT);yangtao@ihep.ac.cn (TY);liukai@ihep.ac.cn (KL);wangcc@ihep.ac.cn (CW);zhangxiyuan@ihep.ac.cn (XZ);zhaomei@ihep.ac.cn (MZ);fanrr@ihep.ac.cn (RF) 2 中国科学院大学物理学院,北京 100049 3 大连理工大学微电子学院,大连 116024;xiaochuan@dlut.edu.cn (XX);hwliang@dlut.edu.cn (HL);xrl@mail.dlut.edu.cn (RX) zhangzz@dlut.edu.cn (ZZ) 4 辽宁大学物理学院,沈阳 110036,中国;yuzhao@ihep.ac.cn (YZ); kangxiaoshen@lnu.edu.cn (XK) 5 吉林大学物理学院,长春 130012,中国;fucx1619@mails.jlu.edu.cn (CF); weiminsong@jlu.edu.cn (WS) 6 散裂中子源科学中心,东莞 523803,中国 7 上海科技大学信息科学与技术学院,上海 201210,中国;zouxb@shanghaitech.edu.cn * 通讯作者:shixin@ihep.ac.cn
确定化学物质与毒性靶标相互作用的能力,例如不良结局途径中的蛋白质,是药物发现和风险评估的重要步骤。筛选化学毒性目标相互作用的计算方法可以作为传统体外 /体内方法的快速替代方法。在这项工作中,我们开发了一种基于化学相似的方案,该方案可以预测化学物质与64个已建立的毒性靶标相互作用的潜力。特别是,我们从公共数据源创建了一个化学基因组学数据库,以识别目标代表,即已知与所选靶标相互作用的化学物质。我们使用Chembl数据库的外部评估集在正确排名的已知相互作用化合物中评估了2D和3D相似性方法的性能。我们发现2D方法在目标预测中的表现优于3D方法。在这里,我们使用基于2D相似性的筛选方法开发了一种公开可用的毒性profiler网站(https://toxpro.bhsai.org/),该方法允许用户为一组查询化合物获得毒性目标配置文件。我们将探测器用于屏幕649已知的急性和剧毒化学物质,全球统一系统(GHS)得分小于2。在此组中,乙酰胆碱酯酶是毒性的最常见目标。开发的毒性特性工具提供了一种快速筛选化学毒性的机制的方法。
在论文初步设计的基础上,本文总结了从比邻星附近返回科学数据的低质量星际探测器群的下行链路,其中最关键的技术问题,并在整个系统设计的背景下解释了它们的重要性。主要目标是确定如果使用目前可用的现成技术构建这样的下行链路,将面临哪些主要挑战或障碍,从而为未来对组成设计挑战和技术的研究提供方向和动力。虽然没有任何基本的物理限制会阻碍这种通信系统,但目前可用的技术在几个方面存在严重不足,还有其他一些重大的设计挑战,其解决方案尚不确定。已确定的最大挑战是质量限制、从多个探测器到同一目标系外行星的多路复用同时通信、姿态控制和指向精度以及由于探测器速度不确定性导致的多普勒频移。最大的技术挑战是电力、高功率和波长灵活的光源、选择性强且波长灵活的光学带通滤波器组以及暗计数率极低的单光子探测器。对于其中的一个关键子集,我们描述了我们遇到的困难的性质及其在整个系统环境中的起源。我们还考虑了将接收限制为单个探测器的接收器,并将其与群体情况进行了比较。