Nadia Sciacca,Tom Carlson Aspire Create,伦敦大学学院 RNOH,斯坦莫尔,HA7 4LP,英国 电子邮件:{nadia.sciacca.17; t.carlson}@ucl.ac.uk 摘要— 如今,技术为人类提供了许多交流几乎所有事物观点的方式。视觉、听觉和触觉媒体是人类最常用的媒体,它们以如此自然的方式支持交流,以至于我们甚至不会主动考虑使用它们。但是对于那些失去运动或感觉能力的人来说,他们很难或不可能控制或感知这些技术的输出,该怎么办?在这种情况下,也许唯一的交流方式可能是直接使用脑信号。因此,本研究的目标是为四肢瘫痪的人(他们可能被限制在自己的房间或床上)提供一种远程呈现工具,以促进我们许多人认为理所当然的日常互动。在我们的案例中,远程呈现工具是一个远程控制的机器人。它可以作为用户日常生活的一种媒介,通过虚拟方式与位于远程房间或地方的朋友和亲戚联系,或者与不同的环境进行探索。因此,目标是设计一个人机系统,使用户能够仅使用思想来控制机器人。技术部分由脑机接口和视觉界面组成,以实现机器人的“模拟触觉共享控制”。在用户和机器人之间实现共享运动控制,并实现自适应功能分配以管理情况的难度。利用这种“模拟触觉反馈”的控制方案是使用人机合作框架进行设计和评估的,并且已经通过五名参与者评估了这种交互方式的好处。初步结果表明,使用“模拟触觉反馈”的控制和合作比没有“模拟触觉反馈”更好。
图 2:Sadtler 等人 (2014) 的 BCI 学习任务。a. 任务结构示意图。受试者首先参与“校准任务”,即他们被动观察屏幕上中心向外的光标移动。记录的运动皮层神经活动用于构建基线解码器并估计内在流形。然后指示受试者在 BCI 控制下执行中心向外的光标移动,首先使用基线解码器,然后使用通过扰动基线解码器构建的扰动解码器。这种扰动可以保持基线解码器与内在流形的对齐(流形内扰动,或 WMP),也可以破坏它(流形外扰动,或 OMP)。b. 内在流形的低维图示及其与本任务中使用的解码器(在方程 3 中定义)的关系。彩色点表示在校准任务的不同试验期间记录的活动模式,由该试验中呈现的光标速度着色。这些刺激的光标速度用右上方插图中的颜色匹配箭头表示,后续光标控制任务中使用的光标目标用绿色菱形表示。引起的神经活动模式主要位于灰色矩形所示的二维平面内,即所谓的内在流形。三个假设的一维解码器用彩色箭头表示,分别标记为基线解码器、WMP 和 OMP。通过将各个活动模式投影到相应的解码器向量上,可以可视化这些解码器的线性读数的相应分量 y 1 。这以绿色标记的一个活动模式为例,图中显示了其在三个解码器上的投影。由于该活动模式靠近内在流形,因此它会从基线解码器和 WMP 产生较大的读数(即远离原点,在三个解码器的交点处),而基线解码器和 WMP 都与内在流形很好地对齐。相比之下,此活动模式通过 OMP 的读数要弱得多(即其在此解码器上的投影更接近原点),因为此解码器远离固有流形。重要的是要记住,此插图是真实任务的简化卡通,其中固有流形是高维的(8-12D 而不是 2D),并且 BCI 任务依赖于两个读数(y 1 ,y 2 ),而不是一个。
系统架构如图2所示。左侧的音高剖面生成器模块基于一种算法,该算法将Leap Motion 设备检测到的作曲家手指坐标转换为音符音高。结果是音高剖面,即一系列没有关于其持续时间的音符。右侧模块的特点是前馈网络分类器,它采用深度网络算法,分析作曲家佩戴的Emotiv 耳机的五个电极发出的脑电图信号,并将其心理状态分类为“专注”或“放松”。这里的心理状态是从脑电图信号获得的一系列功率谱值。该算法先前已通过特定作曲家的心理状态数据集进行训练。复音结构生成器:1)接收音高轮廓,2)将其乘以四以获得复音草案,3)根据作曲家的心理状态,为四个音高轮廓的音符赋予持续时间,并通过乱序方法进行区分。
摘要 在本研究中,我们介绍了一种市售肌电假肢(Myobock ©,奥托博克)的改进版本,旨在为该设备提供基于脑机接口 BMI 的感觉运动控制。新系统使用用户的脑电图 (EEG) 信号以及手镯产生的振动作为输入,手镯包含振动马达,其频率与安装在假指尖的力敏电阻 (FSR) 测量的力成正比。在对七名健全人和四名截肢受试者进行实验期间,三种不同特征提取方法 (CSP、WD、GSO) 的四种组合已用于构建由两种具有不同电极数量的不同记录系统收集的 EEG 信号的特征向量。然后测试了三种机器学习算法(人工神经网络、具有线性和径向基函数核的支持向量机)的分类/预测性能。报告的结果为使用无线 BMI 来控制肌电假肢的主要运动类型提供了概念证明,即使用电极较少的 EEG 系统而不是研究级系统。
ADHD 成人注意力缺陷多动障碍 ASD 自闭症谱系障碍 BCI 脑机接口 CBT 认知行为疗法 CNV 偶然负变异 DOC 意识障碍 ECoG 皮层脑电图 EEG 脑电图 ERD 事件相关去同步 ERP 事件相关电位 fMRI 功能性磁共振成像 fNIRS 功能性近红外光谱 ICT 信息和通信技术 LFP 局部场电位 MEG 脑磁图 MDD 重度抑郁症 MCS 微意识状态 MI 运动意象 PTSD 创伤后应激障碍 rTMS 重复经颅磁刺激 SMR 感觉运动节律 SSSEP 稳态体感诱发电位 SSVEP 稳态视觉诱发电位 sEEG 立体脑电图 tACS经颅交流电刺激 tFUS 经颅聚焦超声刺激 UWS 无反应觉醒综合症 XR 扩展现实
人类通过感知和应对错误来实现高效的行为。错误相关电位 (ErrP) 是在感知错误时发生的电生理反应。有人提出利用 ErrP 来提高脑机接口 (BCI) 的准确性,利用大脑的自然错误检测过程来提高系统性能。然而,外部和环境因素对 ErrP 可检测性的影响仍然不太清楚,特别是在涉及 BCI 操作和感觉运动控制的多任务场景中。在此,我们假设感觉运动控制的困难会导致多任务处理中的神经资源分散,从而导致 ErrP 特征的减少。为了检验这一点,我们进行了一项实验,其中指示参与者将球保持在板上的指定区域内,同时尝试通过运动想象控制显示屏上的光标。BCI 以 30% 的随机概率提供错误反馈。根据感觉运动控制的难度,我们采用了三种场景——无球(单任务)、轻量球(简单任务)和重量球(困难任务)——来描述 ErrP。此外,为了研究多任务对 ErrP-BCI 性能的影响,我们离线分析了单次试验分类准确度。与我们的假设相反,改变感觉运动控制的难度不会导致 ErrP 特征发生显著变化。然而,多任务会显著影响 ErrP 分类准确度。事后分析显示,在单任务 ErrP 上训练的分类器在困难任务场景下准确度降低。据我们所知,这项研究是首次在离线框架内研究在涉及感觉运动控制和 BCI 操作的多任务环境中 ErrP 是如何被调节的。尽管 ErrP 特征保持不变,但观察到的准确度变化表明,在实现基于 ErrP 的实时 BCI 之前,需要设计考虑任务负荷的分类器。
我们展示并分享了一个大型数据库,其中包含来自 87 名人类参与者的脑电信号,这些信号是在一天的脑机接口 (BCI) 实验中收集的,分为 3 个数据集 (A、B 和 C),所有数据集均使用相同的协议记录:右手和左手运动想象 (MI)。每个会话包含 240 次试验(每个类别 120 次),代表超过 20,800 次试验,或大约 70 小时的记录时间。它包括相关 BCI 用户的表现、有关人口统计、个性特征以及一些认知特征的详细信息以及实验说明和代码(在开源平台 OpenViBE 中执行)。这样的数据库可用于各种研究,包括但不限于:(1) 研究 BCI 用户的个人资料与其 BCI 表现之间的关系,(2) 研究 EEG 信号属性如何因不同用户的个人资料和 MI 任务而变化,(3) 使用大量参与者设计跨用户 BCI 机器学习算法或 (4) 将用户的个人资料信息纳入 EEG 信号分类算法的设计中。
脑机接口 (BMI) 是开发大规模神经活动记录创新技术的一种高要求应用。在加州理工大学帕萨迪纳分校、巴黎 ESPCI 医学物理研究所和 Iconeus Paris 之间的跨大西洋合作 (NIH 资助) 框架内,我们开发并实施了第一个基于功能性超声 (fUS) 的 BMI,这是一种最近开发的微创神经成像技术,结合了高空间和时间分辨率以及深层脑覆盖 (Macé 等人,2011)。
描述AGV和主控制器之间通信的标准,因此是将运输系统整合到使用合作运输车辆的连续过程自动化中的基础。通过提高车辆自主权,过程模块和界面以及优选的事件控制命令链的刚性序列,提高了灵活性。根据需要的信息(例如,订单信息),缩短了由于高“插头和播放”功能而导致的实施时间,通常是由中央服务提供的,通常是有效的。车辆应能够与制造商独立于制造商进行实施,并考虑到职业安全的要求。通过使用统一的,总体的协调与所有运输车辆,车辆型号和制造商的相应逻辑,通过使用统一的,总体的协调来降低和增加系统的“插头”功能。使用车辆控制和协调水平之间的共同接口提高制造商的独立性。通过在专有主控制和上级主控制之间实施垂直通信的专有DTS库存系统的集成(参见图1)。