用于发电和海水淡化。设计始于 1994 年中期,计划于 2005 年左右建造。主容器位于外部安全容器中,半满水,设计压力与主容器相同。紧急情况下的余热去除是通过容器壁到安全容器中的水中,然后从那里通过热管到安全壳外的冷却器。内部增压器使用氮气加压,使用压力驱动喷雾器,没有加热器。热交换器是一次通过螺旋式的,产生 30 C 的过热蒸汽。有一个蒸汽喷射器来驱动安全壳喷雾系统。一种新的控制棒驱动机构 (CRDM) 正在开发中,其运动比之前的韩国磁力千斤顶类型更精细。燃料元件是六角形的。预计将开展广泛的研究和开发计划
反应堆保护要求必须检测故障情况,以防止或减少任何活动的释放。基本功能是检测工厂信号(例如反应堆中子通量或冷却剂温度)是否超出阈值。这会在三通道或四通道投票系统中产生跳闸投票。如果检测到故障,则必须通过放下控制棒来跳闸反应堆,并启动缓解措施(例如启动泵和操作阀门)。保护功能通常不是很复杂,但有很多。如果连续进行计算(例如燃料的线性热额定值),则可以更有效地完成某些操作。有些取决于工厂状况或功率水平,从而引入决策逻辑。缓解措施取决于检测到的故障,从中检测到的信号已离开可接受的限度。作为指导,大约 80 个常规逻辑图可以表示压水反应堆 (PWR) 保护所需的输入调节和驱动逻辑。
1.1 简介 1.2 总体工厂描述 1.2.1 主要设计标准 1.2.1.1 一般标准 1.2.1.2 发电设计标准 1.2.1.2.1 安全设计标准 1.2.1.3 系统方法 1.2.1.3.1 核系统标准 1.2.1.3.2 电力转换系统标准 1.2.1.3.3 电力系统设计标准 1.2.1.3.4 放射性废物系统设计标准 1.2.1.3.5 辅助系统设计标准 1.2.1.3.6 屏蔽和访问控制设计标准 1.2.1.3.7 核安全系统和工程保障设计标准 1.2.1.3.8 过程控制系统设计标准 1.2.2 场地描述1.2.2.1 场址特征:场址位置和规模 1.2.2.2 进入场址 1.2.2.3 场址及周边环境描述 1.2.3 结构和设备 1.2.4 核蒸汽供应系统 1.2.4.1 反应堆堆芯和控制棒 1.2.4.2 反应堆容器和内部构件 1.2.4.3 反应堆再循环系统 1.2.4.4 余热排出系统 1.2.4.5 反应堆水净化系统 1.2.4.6 核泄漏探测系统 1.2.5 电气、仪表和控制系统 1.2.5.1 电力系统 1.2.5.2 核系统过程控制和仪表 1.2.5.3 电力转换系统过程控制和仪表 1.2.6 放射性废物系统 1.2.7 燃料处理和贮存系统 1.2.7.1 新燃料贮存 1.2.7.2乏燃料贮存 1.2.7.3 燃料处理系统 1.2.7.4 乏燃料池冷却和清理系统 1.2.8 电力转换系统 1.2.8.1 T
1。简介RP-10是10兆瓦池型核研究反应堆,该反应堆位于佩鲁亚诺·德·埃涅加(Peruano deEnergía)核(IPEN/PERU)的浅水中调节和冷却。其核心采用通常指定为材料测试反应器(MTR)燃料元件的29个板型,以及5个带有无染色的钢包层的银 - 印度 - 卡德粉合金(分别为80%-15%-15%-5%的AG-IN-CD合金)的叉型控制棒。旨在允许插入控制杆的燃料元素命名为控制燃料元件,而其他所有燃料元件都被命名为标准燃料元件。覆盖的石墨反射器和铍反射器位于反应器芯周围。每个MTR燃料元件均由平面平行燃料板构成,并在2个带有凹槽的侧铝制支架之间机械安装。一个平面燃料板包含核燃料所在的肉,周围是铝覆层。标准燃料元件具有16个平行燃料板,而控制燃料元件具有12个平行燃料板。燃油板的总厚度为0.176厘米,肉厚度等于0.100 cm。燃料元件的第一和16燃料板的外覆层厚度为0.045厘米。标准燃料元件的连续板之间的间隙为0.330 cm。每个燃油板的活动长度为61.500 cm,活跃宽度为6.275 cm。燃料元件的总体尺寸为(7.620 x 8.124)厘米高95.730厘米。图1介绍了RP-10研究反应器中辐照的标准MTR燃料元件的图[1]。
操作员态势感知 (SA) 对于确保任何工业设施安全运行至关重要,对于核电站 (NPP) 更是如此。核电站工业事故(按国际原子能机构 (IAEA) 国际核事件分级表 (INES) [ 1 ] 中 1(异常)至 7(重大事故)的严重程度等级升序排列)包括以下案例:加拿大乔克河国家研究反应堆 (NRX) (INES-5) — 控制室控制棒状态指示灯错误、机械故障以及控制室人员沟通不畅等多重故障导致安全关闭棒库意外拔出,造成反应堆功率在 5 秒内失控超过反应堆设计极限的四倍,导致 1952 年 12 月 12 日发生严重堆芯损坏;美国三哩岛核事故(INES-5)——设计不良、模糊的控制室指示器导致操作员失误,影响了紧急冷却水供应,导致 1979 年 3 月 28 日三哩岛 2 号机组 (TMI-2) 反应堆堆芯安全壳部分熔毁;苏联切尔诺贝利事故(INES-7)——人为因素和固有设计缺陷导致 4 号机组于 1986 年 4 月 26 日发生灾难性爆炸并释放放射性物质。从事故后报告 [ 2 – 4 ] 中可以看出,关键事故前兆包括:(1) 由于传统人机界面 (HMI) 设计中的人为因素相关缺陷导致态势感知能力下降;(2) 常态化、偏差化,导致核安全文化松懈; (3) 信息过载(看而不见效应 [ 5 ]),这是由于通过控制室 HMI(面板指示、通告等)向操作员呈现信息的速度太快。);以及 (4) 高度动态单元演进的错误心理模型导致认知错误,这是由于故障或有故障的传感器提供的工厂信息相互冲突,以及现场设备状态监控不正确。
电的基本原理 电是如何产生的 电的产生就是将其他形式的能量转换成电流。 发电机 1831 年,迈克尔·法拉第通过电和磁的实验,发明了第一台发电机。在发电机中,通过旋转线圈内的磁铁,机械能被转化为电能。磁铁的南北极之间的力线被线圈中的导线切割,从而在线圈本身中产生电流。 发电站使用的电磁铁由缠绕在铁芯上的多圈包覆铜线制成。磁铁称为转子,线圈称为定子。 需要某种形式的机械能(例如蒸汽、水、气体或风的运动)来保持磁铁转动。这是通过将移动的蒸汽、水、气体或风的机械力施加到连接到轴的涡轮叶轮上来实现的,而轴又连接到磁铁。 煤炭发电 在南非的大多数现代发电站中,煤炭被燃烧以加热水并将其转化为蒸汽。蒸汽被直接喷射到涡轮叶片上,使涡轮叶片旋转。这又使线圈内的磁转子旋转以产生电能。蒸汽通过涡轮后,必须进行冷却和冷凝。冷却过程将蒸汽重新变成水,以便将其泵送回锅炉重新加热。在锅炉中,蒸汽将再次变成蒸汽并重新开始循环。 Eskom 的许多燃煤发电站都建在煤矿旁边。煤炭通过陆上传送带从矿井运输到发电站。这节省了时间和金钱,并有助于降低电力成本。 来自原子的电能 在核电站中,水不是通过燃烧煤炭加热的,而是由核反应释放的热量加热的。通过控制铀原子分裂的速率可以增加或减少热量。这是通过所谓的“控制棒”来实现的,其功能类似于汽车油门使汽车加速或减速的方式。一种由高度纯化的水和硼组成的“慢化剂”在一次回路中循环,也有助于控制反应性。一次回路的热量被转移到单独的二次回路,水在这里被转化为蒸汽。二次回路中加热水产生的蒸汽用于以与燃煤发电站完全相同的方式旋转涡轮机。然后蒸汽被冷凝并返回再利用。
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息