尽管频率响应分析通常使用专用设备进行,但可以使用较新的示波器来测量电源控制环路的响应。这种分析通常被称为亨德里克·韦德·波德 (Hendrik Wade Bode) 的波特图。传统上,这种分析使用 FFT 算法来测量系统在目标频率范围内的增益和相位。一些新型示波器(例如 4、5 和 6 系列 MSO)在所有通道上采用专用数字下变频器,这些下变频器独立于时域采样率和记录长度运行。此功能称为“频谱视图”,以区别于传统 FFT,可用于改善频率响应分析的结果。本白皮书使用传统 FFT 和频谱视图对两种不同的被测设备 (DUT) 的波特图(也称为控制环路响应)进行了比较。
安全性和可靠性功能包括一个新的双反馈控制环路,允许调节最大灯启动电压和灯电流。调节最大灯电压允许设计人员提供充足的最坏情况灯启动电压,同时保守地限制最大开路电压。创新的新型启动电压生成技术使结节设计人员能够优化高压变压器设计,以实现最大运行效率,而无需功耗开销来保证启动能力。直接驱动拓扑是一种非谐振、振荡器控制的 PWM 调节方法。LX1686 允许选择多种固定工作频率,以使灯电流频率与灯的最有效工作点相匹配,并最大限度地减少高频干扰。
摘要 — 我们推导了用于电磁暂态 (EMT) 仿真的电网形成 (GFM) 逆变器资源 (IBR) 的控制层和物理层子系统的等效电路模型。考虑了三种不同的主控制器:下垂、虚拟同步机 (VSM) 和可调度虚拟振荡器控制 (dVOC)。此外,这些模型包括级联电压和电流控制环路以及 LCL 输出滤波器。本文介绍了单逆变器设置和改进的 IEEE 14 总线拓扑中的五个逆变器网络的仿真。使用模拟电子电路仿真软件(在我们的例子中是 LTspice)模拟的等效电路模型与商用现成的 EMT 软件(在我们的例子中是 MATLAB-Simulink)中基于框图的实现相比,具有相同的精度,但计算负担降低了 150 倍。索引词 — 电磁暂态仿真、等效电路模型、电网形成逆变器。
摘要 — 由于人口增长和对能源资源的需求增加,人们广泛需要可再生能源 (RES)。RES 价格低廉、储量丰富且无污染。储能系统 (ESS) 对于满足负载要求至关重要。由于其能量密度高,BESS 通常受到青睐。在临时情况下,它对突然变化的反应很慢。储能系统 (ESS) 对于满足负载要求至关重要。由于其能量密度高,BESS 通常受到青睐。在临时情况下,它对突然变化的反应很慢。因此,为了构建 HESS,需要将具有高功率密度的 ESS(例如超级电容器)与电池结合使用。ESS 和 PV 阵列通过 48 V DC 连接器连接。在这项工作中,随着太阳能输出功率的上升,HESS 使用额外的功率来保持负载的电源恒定,并在 PV 无法满足负载需求时将能量返回给负载。建议采用集成控制方法,该方法可以高效地产生双向转换器的开关脉冲。电压控制环路产生流向 HESS 的全部电流。除了设计现有的控制环路外,还进行了稳定性分析。在 HESS 稳定性测试中采用了波特图。结果令人鼓舞,控制器有效地在 SC 和电池之间共享功率并恢复直流链路电压。使用建议的控制器,发现 HESS 在长时间提供平均功率和短时间内管理瞬态情况方面表现良好。索引术语 — 电池、可再生能源、储能系统、混合储能系统、超级电容器。
PWM是最早提出的控制方法,通过比较参考电压与反馈电压来调整控制信号的占空比,调节DC-DC变换器的输出,达到自动调节的效果,具有输出电压恒定、开关噪声可预测、容易滤波等优点,但由于开关管频率固定、功耗恒定,在轻载时转换效率较差。PFM的引入,利用调整控制信号解决了PWM的轻载问题。频率调制技术减少了转换过程中的开关负载,不需要复杂的变换器结构,因此不需要控制环路补偿网络,但频率变化引起的响应速度慢、输出电压纹波大,会产生难以控制的电磁干扰。两种方法都有各自的特点和问题(Yu,2003)。
虽然测量电压通常很简单,因为它可以在许多点准确测量,可以直接与大多数控制器接口,并且可以在不影响系统的情况下完成,但测量电流通常并不那么简单。正如我们在大学里学到的,每当我们测量电流时,我们通常必须将一个外部感测元件“插入”到系统中以达到测量的目的。要做到这一点,既要测量准确,又要占用很少的 PCB 空间和很少的组件,既要增加很少的成本,又要保留原始系统性能,这成为设计师面临的挑战。大多数现有方法都需要仔细权衡。一些电机应用甚至推动转向复杂的“无传感器”控制,以节省可观的传感器成本和 PCB 空间 - 并能够在广泛的环境温度环境或具有挑战性的电离/磁场环境中运行。这些方法仍然面临着来自软件模型和复杂控制环路算法的时序、延迟和准确性方面的挑战。本文将展示一种新的、高度集成的、“无损”的局部电流感测方法,该方法解决了许多挑战。首先,让我们从一些传统方法的背景开始。
超低功耗图像传感器,专为始终开启的视觉设备和应用而设计 高灵敏度 3.6μ BrightSense(TM) 像素技术 324 x 324 有效像素分辨率,支持 QVGA 窗口、垂直翻转和水平镜像读出 30FPS 时 <1.1mW QQVGA 分辨率,30FPS 时 < 2mW QVGA 分辨率 可编程黑电平校准目标、帧大小、帧速率、曝光、模拟增益(高达 8 倍)和数字增益(高达 4 倍) 自动曝光和增益控制环路,支持 50Hz/60Hz 闪烁避免 灵活的 1 位、4 位和 8 位视频数据接口,具有视频帧和行同步 具有可编程 ROI 和检测阈值的运动检测电路,具有数字输出作为中断 片上自振荡器 用于寄存器访问的 I2C 2 线串行接口 CSP 和裸片传感器封装选项 高 CRA,适用于小型模块设计
超低功耗图像传感器,专为始终开启的视觉设备和应用而设计 高灵敏度 3.6μ BrightSense(TM) 像素技术 324 x 324 有效像素分辨率,支持 QVGA 窗口、垂直翻转和水平镜像读取 30FPS 时 <1.1mW QQVGA 分辨率,30FPS 时 < 2mW QVGA 分辨率 可编程黑电平校准目标、帧大小、帧速率、曝光、模拟增益(高达 8 倍)和数字增益(高达 4 倍) 自动曝光和增益控制环路,支持 50Hz / 60Hz 闪烁避免 灵活的 1 位、4 位和 8 位视频数据接口,具有视频帧和行同步 具有可编程 ROI 和检测阈值的运动检测电路,具有可用作中断的数字输出 片上自振荡器 用于寄存器访问的 I2C 2 线串行接口 CSP 和裸片传感器封装选项 高 CRA,适用于小型模块设计
Iris Technology Corporation 开发的模块化高级低温冷却器电子设备 (MACE) 系统将可配置的高功率电机驱动器与精确遥测功能相结合,其设计可承受辐射加固。位于低温冷却器附近的遥测聚合单元 (TAU) 通过在本地数字化传感器数据以传输回控制器,最大限度地减少了敏感低温冷却器反馈的衰减和污染,而主控制单元 (MCU) 中的多个 500 W 驱动通道可提供高达 95% 效率的功率波形。模块化设计概念允许在需要更多通道时添加驱动卡,或移除驱动卡以减小尺寸、重量和功耗。TAU 集成了多达 14 个外部传感器,总数据速率高达每秒 800,000 个样本,由控制软件动态分配给任何遥测组合。可以通过安装商用组件或利用替代控制方案来降低抗辐射控制器组件的成本,从而实现电子设备的低成本版本。雷神公司进行了一次演示,演示中驱动了高容量 RSP2 (HC-RSP2) 低温冷却器,温度和振动控制环路在高功率和低低温下关闭。本文讨论了 MACE 的开发、测试和经验教训。
摘要:基于非线性动态逆(NDI)设计了纵向自动着舰系统(ACLS)控制律,以实现抑制尾流、解耦横向状态和跟踪动态期望着陆点(DTP)的目的。首先,建立F/A−18飞机六面进近非线性着舰模型,获取气动、操纵面、极限状态等参数。其次,采用俯仰角控制跟踪期望纵向轨迹的策略。基于自适应NDI设计了自动功率补偿系统(APCS)、俯仰角速率、俯仰角和垂直位置控制环路,并详细推导了稳定性分析和原理描述。采用频率响应法设计了甲板运动补偿(DMC)算法。第三,通过遗传算法对控制参数进行优化。提出了一种综合考虑飞机速度、迎角(AOA)、俯仰速率、俯仰角和垂直位置的适应度函数。最后,在半实物仿真平台上进行了综合仿真。结果表明,所采用的自动着陆控制律既能达到良好的性能,又能抑制气流尾流和横侧耦合。