摘要:本文提出了一种控制佩尔顿轮式涡轮机速度调节器的新算法,该涡轮机用于许多抽水蓄能系统,这些系统在可再生能源参与度较高的孤立电力系统中运行。该算法与使用 PID 或 PI 调节器的标准开发有很大不同,因为除了作用于喷嘴针和导流板外,它还采用了一种新的内环压力稳定电路,以改善频率调节并抑制调节针位置时产生的压力波的影响。所提出的算法已在 Gorona del Viento 风力水力发电厂实施,该发电厂为 El Hierro 岛(西班牙加那利群岛)提供主要能源需求。尽管该工厂除了风力和水力发电系统外,还拥有基于柴油发动机的发电系统,但本文介绍的研究结果的验证重点是频率控制仅由水力发电厂提供的情况。结果表明,采用所提出的算法取代了之前基于经典 PI 调节器的控制系统,能够在不可调度的可再生能源发电发生变化时抑制源自电厂长压力管道的压力波,而案例研究中这种情况发生的频率较高。阻尼器大大减少了累积时间和频率超过不同安全裕度的次数。阻尼器的加入还将低频泵组减载事件的数量减少了 93%。
摘要 - 滑模控制是一种鲁棒的非线性控制算法,已用于实现无人飞机系统的跟踪控制器,该控制器对建模不确定性和外部干扰具有鲁棒性,从而为自主操作提供出色的性能。无人飞机系统滑模控制应用的一个重大进步是采用无模型滑模控制算法,因为滑模控制实施中最复杂和最耗时的方面是结合系统模型推导控制律,这是每个单独的滑模控制应用都需要执行的过程。使用各种航空系统模型和真实世界干扰(例如离散化和状态估计的影响)在模拟中比较了各种无模型滑模控制算法的性能。结果表明,两种性能最佳的算法表现出非常相似的行为。这两种算法在四旋翼飞行器上实现(在模拟和使用真实硬件的情况下),并使用相同的状态估计算法和控制设置将其性能与传统的基于 PID 的控制器进行了比较。模拟结果表明,无模型滑模控制算法表现出与 PID 控制器相似的性能,而无需繁琐的调整过程。两种无模型滑模控制算法之间的比较表明,通过跟踪误差的二次均值测量,性能非常相似。飞行测试表明,虽然无模型滑模控制算法可以控制真实硬件,但在成为传统控制算法的可行替代方案之前,还需要进一步的特性描述和重大改进。无模型滑模控制和基于 PID 的飞行控制器都观察到了较大的跟踪误差,并且其性能对于大多数应用而言是不可接受的。两种控制器的性能不佳表明跟踪误差可以归因于状态估计中的误差。通过改进状态估计进行进一步测试将可以得出更多结论。关键词:无模型控制、滑模控制、鲁棒控制、飞行控制、无人机系统。1.简介
摘要:针对共轴旋翼飞行器自主飞行过程中模型参数的不确定性、外界扰动及传感器噪声对飞行的影响,研究位置姿态反馈控制系统的鲁棒反步滑模控制算法,以解决未知外界干扰情况下飞行器的轨迹跟踪问题。本文针对未知飞行,建立了基于受扰共轴旋翼飞行器的非线性动力学模型。然后,设计了非线性鲁棒反步滑模控制器,分为共轴旋翼飞行器的姿态控制器和位置控制器两个子控制器。在控制器中引入虚拟控制,构造Lyapunov函数,保证各子系统的稳定性。通过数值仿真验证了所提控制器的有效性。最后通过飞行试验验证了反步滑模控制算法的有效性。
2 文献综述.................... ... 6 2.1.1 二冲程发动机 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................11 2.2 控制理论..........................................................................................................................................................................................................................................................................................................................................11 2.2.1 PID 控制算法.......................................................................................................................................................................................................................................11 2.2.2 控制理论.......................................................................................................................................................................................................................................11 2.2.1 PID 控制算法.......................................................................................................................................................................................................................................................11 .. ... . ... ...
摘要 —随着无人机技术的快速发展,无人机被广泛应用于包括军事领域在内的许多应用领域。本文提出了一种新型的基于态势感知 DRL 的自主非线性无人机机动性控制算法,应用于网络物理巡飞弹药。在战场上,基于 DRL 的自主控制算法的设计并不简单,因为通常无法收集现实世界的数据。因此,本文的方法是利用 Unity 环境构建网络物理虚拟环境。基于虚拟网络物理战场场景,可以设计、评估和可视化基于 DRL 的自动非线性无人机机动性控制算法。此外,在现实战场场景中存在许多不利于线性轨迹控制的障碍物。因此,我们提出的自主非线性无人机机动性控制算法利用了态势感知组件,这些组件是在 Unity 虚拟场景中使用 Raycast 函数实现的。根据收集到的态势感知信息,无人机可以在飞行过程中自主且非线性地调整其轨迹。因此,这种方法显然有利于在布满障碍物的战场上避开障碍物。我们基于可视化的性能评估表明,所提出的算法优于其他线性机动控制算法。
摘要 —随着无人机技术的快速发展,无人机被广泛应用于包括军事领域在内的许多应用领域。本文提出了一种新型的基于态势感知 DRL 的自主非线性无人机机动性控制算法,应用于网络物理巡飞弹药。在战场上,基于 DRL 的自主控制算法的设计并不简单,因为通常无法收集现实世界的数据。因此,本文的方法是利用 Unity 环境构建网络物理虚拟环境。基于虚拟网络物理战场场景,可以设计、评估和可视化基于 DRL 的自动非线性无人机机动性控制算法。此外,在现实战场场景中存在许多不利于线性轨迹控制的障碍物。因此,我们提出的自主非线性无人机机动性控制算法利用了态势感知组件,这些组件是在 Unity 虚拟场景中使用 Raycast 函数实现的。基于收集到的态势感知信息,无人机可以在飞行过程中自主且非线性地调整其轨迹。因此,这种方法显然有利于在布满障碍物的战场上避开障碍物。我们基于可视化的性能评估表明,所提出的算法优于其他线性机动控制算法。
摘要 —随着无人机技术的快速发展,无人机被广泛应用于包括军事领域在内的许多应用领域。本文提出了一种新型的基于态势感知 DRL 的自主非线性无人机机动性控制算法,应用于网络物理巡飞弹药。在战场上,基于 DRL 的自主控制算法的设计并不简单,因为通常无法收集现实世界的数据。因此,本文的方法是利用 Unity 环境构建网络物理虚拟环境。基于虚拟网络物理战场场景,可以设计、评估和可视化基于 DRL 的自动非线性无人机机动性控制算法。此外,在现实战场场景中存在许多不利于线性轨迹控制的障碍物。因此,我们提出的自主非线性无人机机动性控制算法利用了态势感知组件,这些组件是在 Unity 虚拟场景中使用 Raycast 函数实现的。基于收集到的态势感知信息,无人机可以在飞行过程中自主且非线性地调整其轨迹。因此,这种方法显然有利于在布满障碍物的战场上避开障碍物。我们基于可视化的性能评估表明,所提出的算法优于其他线性机动控制算法。
摘要 —随着无人机技术的快速发展,无人机被广泛应用于包括军事领域在内的许多应用领域。本文提出了一种新型的基于态势感知 DRL 的自主非线性无人机机动性控制算法,应用于网络物理巡飞弹药。在战场上,基于 DRL 的自主控制算法的设计并不简单,因为通常无法收集现实世界的数据。因此,本文的方法是利用 Unity 环境构建网络物理虚拟环境。基于虚拟网络物理战场场景,可以设计、评估和可视化基于 DRL 的自动非线性无人机机动性控制算法。此外,在现实战场场景中存在许多不利于线性轨迹控制的障碍物。因此,我们提出的自主非线性无人机机动性控制算法利用了态势感知组件,这些组件是在 Unity 虚拟场景中使用 Raycast 函数实现的。基于收集到的态势感知信息,无人机可以在飞行过程中自主且非线性地调整其轨迹。因此,这种方法显然有利于在布满障碍物的战场上避开障碍物。我们基于可视化的性能评估表明,所提出的算法优于其他线性机动控制算法。
摘要 —随着无人机技术的快速发展,无人机被广泛应用于包括军事领域在内的许多应用领域。本文提出了一种新型的基于情境感知 DRL 的自主非线性无人机机动性控制算法,应用于网络物理巡飞弹药。在战场上,基于 DRL 的自主控制算法的设计并不简单,因为通常无法收集现实世界的数据。因此,本文的方法是利用 Unity 环境构建网络物理虚拟环境。基于虚拟网络物理战场场景,可以设计、评估和可视化基于 DRL 的自动非线性无人机机动性控制算法。此外,在现实战场场景中,存在许多不利于线性轨迹控制的障碍物。因此,我们提出的自主非线性无人机机动性控制算法利用了情境感知组件,这些组件是在 Unity 虚拟场景中使用 Raycast 函数实现的。基于收集到的态势感知信息,无人机可以在飞行过程中自主且非线性地调整其轨迹。因此,这种方法显然有利于在布满障碍物的战场上避开障碍物。我们基于可视化的性能评估表明,所提出的算法优于其他线性移动控制算法。