摘要 本文将介绍韩国航空宇宙研究院经济实惠且环保的太空运输计划所采用的增材制造液体火箭发动机部件,并介绍推力室和其他部件的当前发展状况。已采用增材制造技术制造了多个推力室部件,即激光粉末床熔合 (L-PBF) 和粉末定向能量沉积 (p-DED),L-PBF 的材料为纯铜、Inconel718 和 CuCrZr,p-DED 的材料为铝青铜和 Inconel 625。并对制造的推力室进行了点火试验。用于 30 kN 推力液体火箭发动机的涡轮泵也正在设计和计划通过增材制造进行制造。此外,还评估和验证了增材制造对发动机喷嘴延伸、高压容器、热交换器和推力框架的可行性和适用性。
在高功率区域和大型商业应用中,燃气轮机很可能被用作混合动力装置中的燃料燃烧组件。重要的设计考虑因素包括系统集成,以及应用哪些设计参数和非设计参数。当前的燃气轮机需要在整个飞行范围内提供推力,处理不同的输入空气速度和一系列非设计条件。相反,混合动力电动发动机的非设计情况要少得多,并且能够在整个飞行范围内以“设计”转速运行,电池可帮助管理起飞、着陆/推力反转和飞行事故期间的功率输出峰值和低谷。因此,混合动力电动燃气轮机可能遭受的损坏更少,需要的维护也更少,从而为运营商创造一个潜在的成本降低领域。
已经确定了六个战略推力,即推动公共部门的数字化转型,通过数字化提高经济竞争力,建立启用数字基础架构,建立敏捷和有能力的数字人才,创建一个包容性的数字社会,建立可信赖,安全和道德的数字环境。这些战略推力由22种策略,48种国家倡议和28项部门倡议支持。该蓝图的实现分为三个阶段。第1阶段从2021年到2022年开始,这将增强数字采用的基础。涵盖2023年至2025年的第2阶段将推动包容性的数字化转型,而涵盖2026年至2030年的第3阶段将使马来西亚成为区域市场中的数字内容和网络安全性。
如果潜艇是静止的,该方程式写为:𝜋⃗ + 𝑃 ⃗ = 0 ⃗⃗⃗ 为了保持其浸入状态,阿基米德推力必须与潜艇的重量相反:因此,潜艇的质量必须与排水量的体积质量相同。
– 确定总体配置(尾翼或鸭翼、高翼或低翼……) – 分析现有技术 – 评估不同飞行阶段的性能 – 准确评估总重量、燃料重量、发动机推力、升力
在 PLAXIS 2D 输入中,可以使用复合板来模拟钢筋喷射混凝土衬砌,复合板的属性是通过平均喷射混凝土和间隔钢组(等效截面)的贡献来计算的。在第二阶段,一旦运行了 PLAXIS 2D 分析,就有必要在支撑能力图上绘制力矩、剪切力和推力,以检查钢组和喷射混凝土衬砌中产生的应力是否在允许的范围内。为此,首先需要将等效截面上计算出的推力、力矩和剪切力重新分配到钢组和喷射混凝土各个组件上。一旦执行了重新分配操作,就可以生成支撑能力图,并独立评估钢组和喷射混凝土组件的安全性。
太空飞行力学是研究航天器在推力、重力和阻力等力的影响下的运动的领域。太空飞行力学在太空任务的每个阶段都至关重要,从太空任务设计、系统工程到任务操作。
直接聚变驱动器 (DFD) 是一种核聚变发动机,可为任何航天器产生推力和电力。它是一种紧凑型发动机,基于 D-3He 无中子聚变反应,使用普林斯顿场反转配置进行等离子体约束,并使用奇偶校验旋转磁场作为加热方法实现聚变。推进剂是氘,它被聚变产物加热,然后膨胀到磁喷嘴中,产生排气速度和推力。根据任务要求,单个发动机的功率范围可以在 1 - 10 MW 之间,并且能够实现 4 N 至 55 N 的推力,具体取决于所选功率,比冲约为 10 4 s。在这项工作中,我们介绍了使用这种发动机到达和研究太阳系外边界的可能性。目标是在不到 10 年的时间内,携带至少 1000 公斤的有效载荷,前往柯伊伯带及更远的海王星外天体 (TNO),如矮行星鸟神星、阋神星和鸟神星,从而可以执行从科学观测到现场操作等各种任务。所选的每个任务剖面图都尽可能简单,即所谓的推力-滑行-推力剖面图,为此,每个任务分为 3 个阶段:i. 从低地球轨道逃离地球引力的螺旋轨迹;ii. 行星际旅行,从离开影响区到滑行阶段结束;iii. 机动与矮行星会合。图中给出了每次机动的推进剂质量消耗、初始和最终质量、速度和 ∆ V。轨迹分析针对两种情况进行:简化场景,其中 TNO 在黄道平面上没有倾斜,真实场景,其中考虑了真实的倾斜角。此后,研究了多种场景,以达到 125 AU,以便研究太阳磁层的外部边界。我们的计算表明,由 DFD 推进的航天器将在有限的时间内以非常高的有效载荷与推进剂质量比探索太阳系的外部边界,开辟前所未有的可能性。
格林科可持续发展学院(GSS)目前正在提供三个硕士课程:(i)可持续工程(ii)能源科学与技术(III)电子垃圾资源工程和管理博士学位博士学位课程Greenko School邀请了高度动机和热情的学生感兴趣的学生对认同的学科跨学科领域感兴趣的学生。这一轮入学的研究推力区域该学校具有以下六个推力领域:(i)气候变化缓解(ii)能源过渡与工业转型(III)循环和再生经济(IV)气候变化缓解气候变化(V)绿色化学与工业过程(VI)循环,再加型(vi)型号(VI)的ai&太空技术(VI)
太空运输系统 HAER No. TX-116 第 248 页 第三部分 航天飞机主发动机 简介 航天飞机主发动机 (SSME) 是世界上第一台也是唯一一台适用于载人航天的完全可重复使用、高性能液体火箭发动机。分级燃烧发动机燃烧 LO2 和 LH2 的混合物将航天器送入太空。ET 为三个 SSME 提供燃料和氧化剂,SSME 在动力飞行的前两分钟与双 SRB 协同工作。发动机从点火到 MECO 总共运行了大约八分半钟,燃烧了超过 160 万磅(约 528,000 加仑)的推进剂。SSME 为航天飞机提供了超过 120 万磅的推力。SSME 分级燃烧循环分两步燃烧燃料。首先,双预燃室燃烧涡轮泵中的大部分氢气和部分氧气,产生高压和有限温度下的富氢气体。热气流推动高压涡轮泵中的涡轮。涡轮废气流入主燃烧室,燃料在这里完全燃烧,产生高压高温的富氢气体。主燃烧室的废气通过喷嘴膨胀产生推力。在海平面,推进剂为每个发动机提供大约 380,000 磅的推力,额定功率水平 (RPL) 或 100% 推力;390,000 磅的标称功率水平 (NPL) 或 104.5% 的 RPL;420,000 磅的全功率水平 (FPL) 或 109% 的 RPL(或在真空中分别约为 470,000 磅、490,000 磅和 512,000 磅)。发动机可在 67% 至 109% RPL 的推力范围内以百分之一的增量进行节流。所有三个主发动机同时收到相同的节流命令。这在升空和初始上升期间提供了高推力水平,但允许在最后的上升阶段降低推力。发动机在上升过程中采用万向节来控制俯仰、偏航和滚转。SSME 的运行温度比当今常用的任何机械系统都要高。点火前,地球上第二冷的液体 LH2 的温度为零下 423 华氏度。点火后,燃烧室温度达到 6,000 华氏度,比铁的沸点还要高。为了满足严酷操作环境的要求,开发了特殊合金,例如 NARloy-Z(Rocketdyne)和 Inconel Alloy 718(Special Metals Corporation)。 1036 后者是一种镍基高温合金,用于大约 1,500 个发动机部件,按重量计算约占 SSME 的 51%。