长读测序技术的进步加速了大型结构变异 (SV) 的研究。我们通过对来自 1000 基因组计划的 888 个样本进行长读测序,创建了一个精选的、公开可用的多祖先 SV 归因面板。这个高质量的面板用于归因于大约 500,000 名英国生物库参与者的 SV。我们证明了在生物库规模上使用与呼吸、心脏代谢和肝脏疾病相关的 32 种疾病相关表型以及 1,463 个蛋白质水平进行全基因组 SV 关联研究的可行性。该分析确定了数千个全基因组显著的 SV 关联,包括数百个条件独立信号,从而实现了新的生物学见解。专注于肺功能的遗传关联研究
描述实现了一种基于树木的方法,专门针对个性化医学应用。通过使用基因组和突变数据,“ ODT”有效地识别了针对个别患者概况量身定制的最佳药物推荐。“ ODT”算法构建了在每个节点上分叉的决定树,选择最相关的标记物(离散或连续)和相应的处理方法,从而确保了建议既具有个人化和统计上稳健的建议。这种迭代方法通过对治疗建议提出预定义的组大小来增强治疗性决策。此外,所产生的树木的简单性和解释性使医疗保健行业可以使用的方法。包括用于训练决策树的功能,对新样本或材料进行预测以及可视化所得树。有关该方法论的详细见解,请转移到Gimeno等。(2023)。
尽管技术进步允许从各种植物组织的细胞壁进行分离和结构分析,但我们对这些多糖如何组织到特定的分子三维(3D)结构中的理解非常有限(6,7)。阐明这种植物细胞壁的3D组织是对植物如何适应细胞类型的环境和生长条件的充分理解的先决条件。进行结构分析,首先通过使用各种化学品处理从细胞壁中提取单个多糖。但是,这些聚合物在细胞壁内采用的3D结构丢失,只能通过分子计算机建模来预测。X射线衍射和魔法旋转固态核磁共振
此预印本的版权所有者于 2025 年 1 月 24 日发布此版本。;https://doi.org/10.1101/2024.05.15.24306285 doi: medRxiv preprint
计算神经科学的核心目的是将大量神经元种群的活性与潜在的动态系统联系起来。这些神经动力学的模型理想情况下应既可以解释又适合观察到的数据。低级复发性神经网络(RNN)通过具有可拖动动力学表现出这种解释性。但是,尚不清楚如何最佳地拟合低级别的RNN与由对潜在随机系统进行嘈杂观察的数据组成的数据。在这里,我们建议与随机的低级RNN一起使用各种顺序蒙特卡洛方法。我们在由连续和尖峰神经数据组成的几个数据集上验证了我们的方法,在该数据集中,我们获得的尺寸潜在动力学比当前方法的当前状态较低。此外,对于具有分段线性非线性的低级模型,我们展示了如何有效地识别单位数量中多项式而不是指数成本的所有固定点,从而分析了针对大型RNN的推断动力学分析。我们的方法都阐明了实验记录的基础动力系统,并提供了一种生成模型,其轨迹与观察到的可变性相匹配。
完全同构加密(FHE)是一种有前途的加密原始原始性,用于实现私人神经网络推理(PI)服务,通过允许客户端将推理任务完全卸载到云服务器,同时使客户端数据不符合服务器。这项工作提出了Neujeans,这是一种基于深层卷积神经网络(CNN)PI的解决方案。neujeans解决了CNN评估的巨大计算成本的关键问题。我们介绍了一种称为系数中插槽(CINS)编码的新型编码方法,该方法可以在一个HE乘法中进行多次插入而无需昂贵的插槽排列。我们进一步观察到编码是通过在常规插槽编码中的密文上进行离散傅立叶变换(DFT)的前几个步骤来获得的。此属性使我们能够保存CINS和插槽编码之间的转换,因为启动绑带密文始于DFT。利用这一点,我们为各种二维卷积(Conv2D)操作设计了优化的执行流,并将其应用于端到端CNN启动。neujeans与基于最新的FHE PI工作相比,高达5.68倍的Conv2D激活序列的性能加速了,并在仅几秒钟内就可以在Imagenet的规模上执行CNN的PI。
单细胞转录组学实验提供了跨细胞态杂基细胞群体的基因表达快照。这些快照已被用于推断轨迹和动态信息,即使没有基因表达相似性订购细胞的密集,时间序列数据。然而,尽管单细胞快照有时提供了对动态过程的有价值的见解,但当前的订购细胞的方法受到缺乏内在物理含义的“假频率”的描述性概念的限制。而不是伪赛,我们通过原则建模方法提出了“过程时间”的推断,以制定轨迹和推断对应于经受生物物理过程的细胞对应的潜在变量。我们对这种方法的实施称为Chronocell,提供了建立在细胞状态过渡的轨迹的生物物理表述。计时模型是可识别的,使参数推断有意义。更重要的是,当细胞状态位于连续体上并聚类时,当细胞聚集到离散状态时,计时核可以在轨迹推理之间插值。通过使用从类似群集到连续的各种数据集,我们表明计时赛使我们能够评估数据集的适用性,并在过程时间内揭示了与生物过程时间一致的过程。我们还将降解速率的参数估计值与来自代谢标记数据集的参数估计值进行了比较,从而展示了计时性的生物物理实用性。然而,基于模拟的性能表征,我们发现过程时间推断可能具有挑战性,突出了数据集质量的重要性和仔细的模型评估。
部分由(1)在该领域进行研究的博士生领导,并且(2)被选为指导技能。
动态治疗方案或政策是针对单个特征量身定制的多个阶段的决策功能的序列。实践中的一类重要的治疗政策,即多阶段固定治疗政策,规定了使用相同决策功能在各个阶段使用相同决策功能的治疗分配概率,在该阶段中,该决定基于相同的相同特征,这些功能集成了时间改进的变量(例如,经常收集的,常规收集的疾病生物标志物)。尽管有广泛的文献来构建与动态治疗策略相关的价值函数的有效推断,但很少的工作集中在策略本身上,尤其是在存在高维特征变量的情况下。我们旨在填补这项工作的空白。具体来说,我们首先使用增强的价值加权估计器来估算多阶段固定治疗策略,以提高渐近效率,并进一步应用惩罚来选择重要的特征变量。然后,我们为有效推理构建策略参数估计器的一步改进。从理论上讲,我们表明改进的估计器在渐近上是正常的,即使在较慢的收敛速率上估算了滋扰参数,并且特征变量的尺寸随样本尺寸而增加。我们的数值研究表明,所提出的方法估计具有近乎最佳价值函数的稀疏政策,并对策略参数进行有效的推断。
摘要背景:牙面异常,包括斑纹,可能导致功能障碍和社会心理挑战。尽管生长和发展过程中的遗传学和环境因素扮演着关键的作用,但儿童肥胖的影响尚不清楚。这项研究旨在研究使用孟德尔随机化(MR)的儿童期高体重与牙本质异常之间的因果关系。方法:使用全基因组关联研究数据应用了两样本的MR方法,这是一种在遗传流行病学中用于推断暴露与结果之间因果关系和结果的一种技术,该技术使用每个遗传关联研究的摘要数据。这种方法利用基因的随机分配来克服观察性研究中的混杂和反向因果关系问题,通过使用遗传变异作为仪器变量。儿童肥胖和体重指数(BMI)是暴露和牙本质异常。在严格的过滤后,14个儿童肥胖和16个与BMI相关的单核苷酸多态性被选为使用反相反的加权,MR-EGGER,MR-EGGER,加权中位数,加权模式和Mendelian随机性随机化模式和Mendelian随机性的多效性残留率和脱位率(MR-PRESSO)方法分析的仪器变量。用于鉴定潜在的多效性,MR-EGGER截距测试和MR-Presso全球测试。此外,进行了一项删除灵敏度分析,以评估发现的鲁棒性。Cochrane的Q检验,漏斗图,EGGER截距测试和MR-Presso全球测试没有异质性或水平多效性。结果:儿童肥胖(P = 0.005,赔率无线电(OR)= 0.918 [0.865,0.974])和较高的BMI(P = 3.72×10-6,OR = 0.736 [0.646,0.838])与潜在的CASAL的牙本质相关关系降低,与潜在的CASAL相关性降低。保留的分析确认了结果稳定性。结论:这项研究提供了遗传证据,表明儿童肥胖和BMI可能与牙齿/下巴畸形(如牙合牙合)的发生率较低有关。虽然鉴于儿童肥胖的总体健康风险,但似乎存在逆关系,但该链接需要谨慎的解释和进一步的研究。
