摘要在这项研究中,掺杂元元件对超声喷涂的Moo 3薄膜的线性,非线性吸收和光学限制特性的影响。线性光学结果表明,随着带量的缺陷状态的密度与掺杂的密度增加,并结合使用带隙能量和URBACH能量的增加。广泛的光致发光排放在350和600 nm的范围内,通过掺杂降低了强度。揭示了对非线性吸收(NA)行为的缺陷效应,使用两个理论模型分析了OA Z-SCAN数据,仅考虑两种光子吸收(2PA)(模型1)和一个光子吸收(OPA),2PA和自由载体吸收(模型2)。观察到NA行为,并发现由于新的氧空位和进一步缺陷状态的形成而产生的输入强度和掺杂原子会增强。模型2中薄膜的Na系数比模型1中的2PA系数高100倍。该结果揭示了缺陷状态对NA行为的强烈影响。在研究的掺杂原子中,由于缺陷态密度较高,CU导致Na增强。虽然真正的2Pa是V和Fe掺杂的MOO 3薄膜的主要Na机制,但OPA和2PA是Ni,Zn和Cu掺杂的MOO 3薄膜的主要Na机制,因为它们的缺陷状态较高。Cu掺杂的MOO 3薄膜的光学限制阈值为0.026 MJ / cm 2,这是由于其增强的Na行为。考虑到获得的结果,这项研究为可见的波长区域中的光学限制器打开了掺杂的MOO 3薄片的潜力的门。
本文提出了一种直接而有趣的方法,用于设计宽带宽度,轻巧和可调电磁波(EMW)吸收材料。通过燃烧实验从“法老的蛇”中汲取灵感,生物质碳源和蔗糖用于制造Fe/Fe 3 O 4 @porous Carbon(PC)复合材料。随后,应用高温钙化以增强材料的Mi Crowave吸收特性。准备好的复合材料表现出令人印象深刻的6.62 GHz有效带宽,并且在匹配的厚度为2.2 mm的情况下,具有-51.54 dB的出色吸收能力。此外,通过调整磁性颗粒的含量并控制复合材料的厚度,可以实现C,X和KU频段的全面覆盖范围。出色的性能表明,合成的Fe/Fe 3 O 4 @pc多孔材料对电磁波吸收的应用具有重要潜力。它为获取吸收宽带吸收材料的新颖,直接且具有成本效益的方法打开了。
摘要:灯笼在光电子中主要用于掺杂剂,以增强半导体设备的物理和光学特性。在这项研究中,灯笼(III)氢氧化物纳米颗粒(LA(OH)3 NP)用作聚乙基亚胺(PEI)功能化的氮(N)掺杂的石墨烯量子点(PEI- N GQD)的掺杂剂。通过绿色新颖方法在单一步骤中从LA(NO)3中制备3个NPS掺杂的PEI- nps-n GQD纳米复合材料,并以傅立叶转换红外光谱(FT-IR)为特征(TEM)。 在n型Si晶圆上沉积,洛杉矶(OH)3 nps掺杂的PEI- N GQDS纳米复合材料形成Schottky Diodes。 I -V特性和二极管的光响应是根据照明强度在0-110 mW cm -2和室温下的照明强度的函数。 发现二极管的直接拟合比和理想性因子降低,而Schottky屏障和串联电阻随着增强的照明而增加。 作为光电探测器,LA(OH)3 nps掺杂的PEI- N GQD/N-SI异质结的表现出3.9×10 - 3 AW - 1在22 mW cm-2下,在-0.3 V偏见下,在22 mW cm-2下,最大检测到8.7×10 8 JONES的最大检测,并在8.7×10 8 JONES中进行了研究。呈现LA(OH)3 NPS掺杂的PEI-N GQD的结构,电气和光电特性,表明这些纳米复合材料对于光电应用程序有望有望。通过绿色新颖方法在单一步骤中从LA(NO)3中制备3个NPS掺杂的PEI- nps-n GQD纳米复合材料,并以傅立叶转换红外光谱(FT-IR)为特征(TEM)。在n型Si晶圆上沉积,洛杉矶(OH)3 nps掺杂的PEI- N GQDS纳米复合材料形成Schottky Diodes。I -V特性和二极管的光响应是根据照明强度在0-110 mW cm -2和室温下的照明强度的函数。发现二极管的直接拟合比和理想性因子降低,而Schottky屏障和串联电阻随着增强的照明而增加。作为光电探测器,LA(OH)3 nps掺杂的PEI- N GQD/N-SI异质结的表现出3.9×10 - 3 AW - 1在22 mW cm-2下,在-0.3 V偏见下,在22 mW cm-2下,最大检测到8.7×10 8 JONES的最大检测,并在8.7×10 8 JONES中进行了研究。呈现LA(OH)3 NPS掺杂的PEI-N GQD的结构,电气和光电特性,表明这些纳米复合材料对于光电应用程序有望有望。关键字:稀土元素,灯笼(III)氢氧化物掺杂,石墨烯量子点,绿色方法,纳米复合二极管,光敏性
诸如厚度相关的带隙,这对于硅以外的超大规模数字电子学、光电子学和能源应用具有吸引力。 [1] TMD 的无悬挂键结构为实现高质量范德华异质结构与块体半导体提供了独特的可能性,从而实现利用界面电流传输的先进异质结器件。 [2–5] 特别是,单层或几层 MoS 2 与宽带隙半导体(如 III 族氮化物(GaN、AlN 和 AlGaN 合金)和 4H-SiC)的集成,目前在光电子学(例如,用于实现覆盖可见光和紫外光谱范围的高响应度双波段光电探测器)[6–11] 和电子学(例如,用于实现异质结二极管,包括带间隧道二极管)中越来越受到关注。 [12–17]
这种方法倾向于创建不良的缺陷,然后将其去除需要其他退火步骤。最近,大量的研究注意力集中在2D材料上,[1,2],因为它们不仅具有从绝缘子到金属的电子特性,而且具有与降低尺寸相关的独特特性。虽然2D材料可以用与散装系统相同的方法掺杂,但它们的方法是独特的。由于仅表面几何形状,也可以通过以下方式获得2D材料中的掺杂; 1)物理/化学吸附; 2)离子液体门控; 3)直接原子构造。[3,4]表面吸附和离子 - 液体门基本上与环境与2D材料之间的电荷转移的实现相同,这两个材料都非常有效,这两个材料都非常有效。但是,系统集成的困难限制了这些方法的实际应用。可以通过硫化/硒化来完成2D材料中的直接原子替代。[5]或者,可以通过辐射[6,7]或退火过程中的热蒸发产生空缺,然后进行掺杂物种的沉积。直接替代也可以通过离子植入来实现,但是在技术上很难,因为它需要非常低的离子能量(低于100 eV),或者需要额外的缓冲层和通量后的涂层[9],否则离子会通过原子上的较薄靶标。[10,11]至于2D过渡金属
在ER掺杂的磷酸盐玻璃中淬灭,用于紧凑的光激光器和放大器 / Pugliese,迭戈; Boetti,Nadia Giovanna; Lousteau,J。; Ceci Ginistrelli,Edoardo; Bertone,Elisa; Geobaldo,Francesco;米兰,丹尼尔。- 在:合金和化合物杂志。- ISSN 0925-8388。-657:(2016),pp。678-683。[10.1016/j.jallcom.2015.10.126]
通过执行密度功能理论(DFT)计算来研究非甾体类抗炎药的吸附,提供了抽象的药物输送见解。布洛芬(IBU),由铁掺杂的碳化硅(FSIC)石墨烯单层。在这方面,优化了IBU,SIC和FSIC的单个模型以获得其稳定的几何形状和特征,其中为增强的FSIC石墨烯单层发现了出色的成就,可用于原始的SIC石墨烯单层,以与IBU物质相互作用。随后,通过重新调整Bimolecular模型来获得IBU@SIC和IBU@FSIC复合物,并以-1.44 kcal/kcal/kcal/kcal/kcal/mol和-43.14 kcal/mol/mol/mol,相应地,对IBU的相互作用和SIC和SIC和FSIC的单层相互作用的形成进行了研究。此外,还发现了铁掺杂区域在管理FSIC和IBU对应物之间的相互作用方面的显着作用。o…fe相互作用在IBU@FSIC复合物中的存在得到了分子(QTAIM)分析中原子量子理论的结果肯定。电子分子轨道结果表明,与SIC石墨烯单层相比,FSIC石墨烯单层较软,可以更好地参与与IBU物质的相互作用。比较了态度(DOS)图(DOS)图和能量差距(GAP)距离的距离(GAP)的距离(GAP)的距离(GAP)距离与单一石墨烯单层与复杂状态的边界分子水平的距离相比,FSIC比SIC更容易IBU检测IBU检测。作为最后的说明,在该领域进一步研究后,发现了IBU@FSIC复合物的适用性,可作为拟议的药物输送平台工作。
[(DNA)2 - AG 16 Cl 2] Q(q = 10)(图1)。10我们的先前理论工作提供了氯化物配体的证据,并首先了解了聚类的电子结构和光吸收10的特征,以及有关如何在DFT计算中处理这些系统在溶剂溶液中如何处理这些系统的基准,相对于溶剂效应,交换量的水平,交换相互作用的水平以及溶液中的内在电荷。11,我们在参考文献中发现。11,簇电荷对最高占用和最低的未占用分子轨道(HOMO-LUMO GAP)以及计算的UV-VIS吸收光谱之间的能量差距明显影响,然后可以直接与早期发布的实验数据进行比较。一个明确的结论是,电荷Q = 10 E给出了与实验数据和电子基态最大的Homo -Lumo间隙的绝对最佳匹配,反映了
最近发现的高温超导镍的双层结构la 3 ni 2 o 7为研究相关性和超导性提供了一个新的平台。从双层哈伯德模型开始,我们表明,由于Hubbard的相互作用和大型层间耦合,粘合带形成了分子莫特绝缘子极限。这个分子莫特绝缘子从转移到抗抗议带的电子中以较弱的层间偶联强度自载。自掺杂的分子莫特绝缘子类似于在铜层中研究的掺杂的莫特绝缘子。我们提出的LA 3 Ni 2 O 7是一种自掺杂的分子莫特绝缘子,其分子mott限制是由两个近两个退化的抗对称d x 2-y 2和d z 2轨道形成的。较高能量对称d x 2-y 2轨道的部分职业导致自兴奋剂,这可能导致LA 3 Ni 2 O 7中的高温超导性。