资金信息 本研究由 Isala 科学与创新基金(荷兰兹沃勒 Isala 医院)、Dr. CJ Vaillant 基金(荷兰阿尔梅勒 Landelijke Vereniging van Crematoria)和 Nutricia Specialized Nutrition(荷兰祖特梅尔 Nutricia Nederland BV)资助。赞助方未参与研究的设计和实施、数据的收集、管理、分析和解释,也未参与手稿的准备、审查和批准,也未参与决定是否将手稿提交出版。
摘要 埃及尼罗河三角洲地区需要一种高精度数字高程模型 (DEM) 用于多种环境应用,特别是用于研究海平面上升和地面沉降现象的危险影响。由于埃及没有官方发布的国家 DEM,因此在地理信息系统 (GIS) 环境中使用九种空间插值方法 (SIM) 为该地区创建了一个原始的高精度局部数字高程模型 (LDEM)。插值过程是在数字化超过 220 幅比例为 1:25,000 的地形图之后进行的,从这些地图中提取了超过 810,000 个高程(点高程)点。每个 SIM 都应用了多个参数和标准,以达到最佳设置,从而生成用于环境应用的 LDEM。使用大约 200 个已知的 GPS/水准地面控制点 (GCP),将开发的 LDEM 与八个免费的全球数字高程模型 (GDEM) 进行了比较,在对所有使用的数据集应用垂直和水平基准匹配以及异常值检测程序后,对 GDEM 和 LDEM 残差进行了统计评估。此外,还计算了可靠性指数 (RI),以确定尼罗河三角洲地区的最佳 DEM。完成的结果表明,EARTHEnv-DEM90 获得了最高的 RI 5.47,是最佳的全球 DEM。对于局部 DEM 的插值方法,结论是 Kriging-b
摘要 金融衍生品的定价,特别是百慕大期权等可提前行使的期权的定价,是金融机构重要但繁重的数值任务,其加速将对业务产生巨大的影响。最近,量子计算在金融问题中的应用开始被研究。在本文中,我们首次提出了一种百慕大期权定价的量子算法。该方法使用通过量子振幅估计估计出的插值节点的值,通过切比雪夫插值对百慕大期权定价的关键部分延续值进行近似。在该方法中,生成基础资产价格路径的调用预言机的次数为 O(ϵ –1),其中 ϵ 是期权价格的误差容忍度。这意味着与基于经典蒙特卡洛的方法(如最小二乘蒙特卡洛)相比,速度提高了二次方,其中预言机调用次数为 O(ϵ –2)。
最近有人提出,嘈杂的中型量子计算机可用于优化经典计算机上格子量子场论 (LQFT) 计算的插值算子构造。这里,开发并实施了该方法的两种具体实现。第一种方法是最大化插值算子作用于真空状态与目标本征态所创建状态的重叠或保真度。第二种方法是最小化插值状态的能量期望值。这些方法在 (1 + 1) 维中针对单一味大质量 Schwinger 模型的概念验证计算中实现,以获得理论中矢量介子状态的量子优化插值算子构造。虽然在没有量子门误差噪声的情况下,保真度最大化是更好的选择,但在概念验证计算中,能量最小化对这些影响更具鲁棒性。这项工作具体展示了中期量子计算机如何用于加速经典 LQFT 计算。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光检测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,该过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。本文对九种算法的插值精度进行了比较分析,这些算法用于在茂密森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在一般精度方面具有相似的性能,RMSE 值在 0.11 到 0.28 m 之间(当模型分辨率设置为 0.5 m 时)。其中五种算法(自然邻域、Delauney 三角剖分、多级 B 样条、薄板样条和 TIN 薄板样条)对超过 90% 的验证点的垂直误差小于 0.20 m。同时,对于大多数算法,主要垂直误差(超过 1 m)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太明显。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光检测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,该过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。本文对九种算法的插值精度进行了比较分析,这些算法用于在茂密森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现总体精度方面的性能相似,RMSE 值在 0.11 到 0.28 m 之间(当模型分辨率设置为 0.5 m 时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和 TIN 薄板样条)对超过 90% 的验证点的垂直误差小于 0.20 m。同时,对于大多数算法,主要垂直误差(超过 1 m)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度会影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太明显。
1 Department of Biostatistics, Gillings School of Global Public Health, University of North 8 Carolina at Chapel Hill 9 2 School of Computer Science, Carnegie Mellon University 10 3 North Carolina School of Science and Mathematics 11 4 Research Computing, University of North Carolina at Chapel Hill 12 5 Melbourne Dental School, The University of Melbourne 13 6 Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill 14 7 Department北卡罗来纳大学亚当斯牙科诊断科学诊断科学学院15号教堂山16 8 16 8儿科牙科和牙科公共卫生系,亚当斯牙科学院,北卡罗来纳大学17号教堂山大学17号教堂山18 9 9 9 9 9北卡罗莱纳州吉尔林斯大学,北卡罗莱纳大学吉尔林斯大学,北部19级卡罗莱纳大学,教堂山脉教育部。北卡罗来纳州21号教堂山22
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。