资金信息 本研究由 Isala 科学与创新基金(荷兰兹沃勒 Isala 医院)、Dr. CJ Vaillant 基金(荷兰阿尔梅勒 Landelijke Vereniging van Crematoria)和 Nutricia Specialized Nutrition(荷兰祖特梅尔 Nutricia Nederland BV)资助。赞助方未参与研究的设计和实施、数据的收集、管理、分析和解释,也未参与手稿的准备、审查和批准,也未参与决定是否将手稿提交出版。
摘要 金融衍生品的定价,特别是百慕大期权等可提前行使的期权的定价,是金融机构重要但繁重的数值任务,其加速将对业务产生巨大的影响。最近,量子计算在金融问题中的应用开始被研究。在本文中,我们首次提出了一种百慕大期权定价的量子算法。该方法使用通过量子振幅估计估计出的插值节点的值,通过切比雪夫插值对百慕大期权定价的关键部分延续值进行近似。在该方法中,生成基础资产价格路径的调用预言机的次数为 O(ϵ –1),其中 ϵ 是期权价格的误差容忍度。这意味着与基于经典蒙特卡洛的方法(如最小二乘蒙特卡洛)相比,速度提高了二次方,其中预言机调用次数为 O(ϵ –2)。
摘要:将点云分离为地面点和非地面点是处理用于各种应用的机载激光扫描 (ALS) 数据的重要步骤。基于插值的滤波算法通常用于滤波 ALS 点云数据。然而,大多数传统的基于插值的算法在保留突变地形特征方面表现出缺点,导致这些区域的算法精度较差。为了克服这一缺点,本文提出了一种改进的自适应表面插值滤波器,该滤波器具有多级层次结构,使用布料模拟和地形起伏幅度。该方法使用三个层次的临时数字高程模型 (DEM) 栅格表面和薄板样条 (TPS) 插值,基于自适应残差阈值将地面点与未分类点分离。采用布料模拟算法生成足够有效的初始地面种子,以构建高质量的地形表面。根据被检查区域的起伏幅度自适应地构建残差阈值,以在分类过程中捕捉复杂的景观特征。使用来自国际摄影测量与遥感学会 (ISPRS) 委员会的 15 个样本来评估所提算法的性能。实验结果表明,所提方法在平坦区域和陡峭区域都能产生令人满意的结果。与其他方法相比,该方法在滤波结果方面表现出优异的性能,遗漏错误率最低;特别是,所提方法保留了陡坡和阶地等不连续的地形特征。
b'one 在某种意义上用 O \xe2\x88\x9a \xf0\x9d\x91\xa1 步量子行走代替经典随机游走的 \xf0\x9d\x91\xa1 步。需要注意的是,量子快进只能以非常小的成功概率产生最终状态。然而,在我们的应用中,它以概率 e \xce\xa9 ( 1 ) 成功。这通过一个富有洞察力的论点表明,该论点根据经典随机游走来解释量子快进的成功概率。也就是说,它对应于经典随机游走从一个随机的未标记顶点开始,在 \xf0\x9d\x91\xa1 步后访问一个标记顶点,但在 \xf0\x9d\x91\xa1 个额外步骤后返回到未标记顶点的概率。我们表明,通过调整游走的插值参数,可以将该概率调整为 e \xce\xa9 ( 1 )。在第 2 节中描述了一些准备工作之后,我们在第 3 节中讨论了算法 1 和主要结果,并在第 4 节中提供了分析的细节。在第 5 节中,我们表明 HT + 和 HT 之间的差距确实可能非常大。我们在 \xf0\x9d\x91\x81 \xc3\x97 \xf0\x9d\x91\x81 网格上构造标记元素的排列,其中 HT + = \xce\xa9 ( \xf0\x9d\x91\x81 2 ) 但 HT = O( \xf0\x9d\x91\x93 ( \xf0\x9d\x91\x81 )),其中 \xf0\x9d\x91\x93 任意缓慢地增长到无穷大。这表明当有多个标记元素时,Krovi 等人的算法可能严重不理想。原因是他们的算法实际上解决了一个更难的问题:它从限制在标记顶点的平稳分布中采样(在网格的情况下为均匀分布)。因此,当从该分布中采样比仅仅找到一些标记元素困难得多时,他们的算法可能会很慢。在第 6 节中,我们介绍了第二种更简单的新算法,我们推测 2 可以在 O \xe2\x88\x9a' 时间内找到一个标记元素
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光探测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,这一过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。在本文中,我们对九种算法的插值精度进行了比较分析,这些算法用于在茂密的森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在总体精度方面性能相似,RMSE 值在 0.11 到 0.28 米之间(当模型分辨率设置为 0.5 米时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和基于 TIN 的薄板样条)对于超过 90% 的验证点具有小于 0.20 米的垂直误差。同时,对于大多数算法,主要垂直误差(超过 1 米)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太显著。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光检测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,该过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。本文对九种算法的插值精度进行了比较分析,这些算法用于在茂密森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现在一般精度方面具有相似的性能,RMSE 值在 0.11 到 0.28 m 之间(当模型分辨率设置为 0.5 m 时)。其中五种算法(自然邻域、Delauney 三角剖分、多级 B 样条、薄板样条和 TIN 薄板样条)对超过 90% 的验证点的垂直误差小于 0.20 m。同时,对于大多数算法,主要垂直误差(超过 1 m)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太明显。
摘要:地表数字模型在林业中具有许多潜在应用。如今,光检测和测距 (LiDAR) 是收集形态数据的主要来源之一。通过激光扫描获得的点云用于通过插值对地表进行建模,该过程受到各种误差的影响。使用 LiDAR 数据收集地表数据用于林业应用是一个具有挑战性的场景,因为森林植被的存在会阻碍激光脉冲到达地面的能力。因此,地面观测的密度将降低且不均匀(因为它受到冠层密度变化的影响)。此外,森林地区通常位于山区,在这种情况下,地表的插值更具挑战性。本文对九种算法的插值精度进行了比较分析,这些算法用于在茂密森林植被覆盖的山区地形中从机载激光扫描 (ALS) 数据生成数字地形模型。对于大多数算法,我们发现总体精度方面的性能相似,RMSE 值在 0.11 到 0.28 m 之间(当模型分辨率设置为 0.5 m 时)。其中五种算法(自然邻域、Delauney 三角剖分、多层 B 样条、薄板样条和 TIN 薄板样条)对超过 90% 的验证点的垂直误差小于 0.20 m。同时,对于大多数算法,主要垂直误差(超过 1 m)与不到 0.05% 的验证点相关。数字地形模型 (DTM) 分辨率、地面坡度和点云密度会影响地面模型的质量,而对于冠层密度,我们发现与插值 DTM 的质量之间的联系不太明显。
已知的研究非微扰状态下量子场论的唯一方法是使用对离散时空格子进行调控的数值计算。然而,这类计算往往面临着指数级的信噪比挑战,即使使用下一代经典计算,关键的物理研究也无法维持。这里提出了一种方法,通过构建优化的插值算子,可以使用在嘈杂的中规模量子时代硬件上进行小规模量子计算的输出来加速更大规模的经典场论计算。该方法是在 1 + 1 维 Schwinger 模型的背景下实现和研究的,这是一种简单的场论,与核物理和粒子物理的标准模型具有关键特征。
