傅里叶变换红外光谱(FTIR,Bruker VERTEX 70 + HYPERRION 2000),光学发射光谱(OES,经典的 Princeton Instruments Acton SpectraPro 2500i 和时间分辨的 Princeton Instruments Acton SP2750)。激光衍射喷雾测量(Malvern Spraytec),剥离试验(Tinius Olsen H1KT)高温摩擦仪 THT 石英晶体微天平带耗散监测(QCM-D)(QSense E1)液滴形状分析仪(水接触角)带温控室(KRUSS,DSA100)配备恒电位仪/恒电流仪(Metrohm Autolab)的光电化学电池、太阳模拟器和气相色谱仪用于(光)电化学和(光)(电)催化测量。纳米压痕仪 Bruker Hysitron TI 980(纳米机械和纳米摩擦学测试)。
目前,摩擦学系统的运行性能和可靠性是通过采用定期或在线诊断技术来维持的。这些技术当然在提高各种系统的性能、可靠性和耐用性方面是有效的。然而,这些系统总是必须关闭,以根据系统状况采取必要的纠正措施。这种方法通常被认为是被动的,目前没有太多主动方法能够就地采取纠正措施,以保持复杂技术系统所需的性能、可靠性和耐用性。吕勒亚理工大学机械元件系最近创造了一个新术语“摩擦电子学”。它本质上是基于结合摩擦学和电子学知识,用于主动控制和优化现代技术系统的性能、可靠性和耐用性。Tribotronics 目前还只是一个想法,还需要进行大量的研发工作才能开发出可行且可靠的 Tribotronic 系统。因此,本论文是长期开发 Tribotronic 系统的第一步。众所周知,润滑剂在控制(最小化)机器的摩擦和磨损方面起着非常关键的作用。因此,其性能在老化过程中的劣化会显著影响技术系统的性能、可靠性和耐用性。当然,有几种实验室测试可以分析和测量使用过的润滑剂性能的变化,但对其在使用过程中老化的理解还远远不能令人满意。因此,显然需要开发一些技术或系统来监测和现场分析润滑剂在使用过程中的老化行为。这项工作的重点是开发和实施 Tribotronic 诊断系统 (TDS),以监测位于吕莱亚理工大学 Tribolab 的 Haldex 限滑联轴器 (HLSC) 试验台上的润滑剂老化情况。在开发 TDS 原型时使用了流体特性分析仪。还开发了 LabVIEW 测量界面来测量和分析各种润滑剂参数。为了了解润滑剂的老化行为,在 HLSC 测试中使用润滑剂时,润滑剂粘度和介电性能的变化
铝是一种轻质材料,其密度(2.7 g/cm 3)大约比铁、铜和黄铜等材料低三倍。它在空气、水和海水等各种环境条件下以及在不同化学物质的作用下都表现出完美的耐腐蚀性。此外,它还具有美观、可加工、高电导率和热导率等吸引人的特性。由于其物理、机械和摩擦学特性,它在汽车工业和飞机中非常常用 [1-3]。铝合金 1100 和 1050 特别用于不需要高强度但需要高成形性和耐腐蚀性的工业。它们用于在薄板金属件、通过深拉和旋压工艺制造的管道和通用容器、热交换器、焊接组件、车辆板和照明(如光反射器)中运输化学品和食品 [2, 3]。
Yuchan Zhang和Qilin Jiang使用泵探针成像技术检查了嘴唇形成机制。他们强调了飞秒激光脉冲塑形(考虑时间/频率,极化和空间分布)如何有效地制造高质量的嘴唇。他们还探索了嘴唇的各种应用以及塑造超快速激光器以进行高效,高质量处理的重要性[16]。Hongfei Sun,Jiuxiao Li和Mingliang Liu回顾了Lips在生物医学应用中的作用。他们讨论了激光参数的影响,例如能量,脉冲计数,极化和脉搏持续时间,对嘴唇的产生。本综述还介绍了飞秒激光修饰的嘴唇如何应用于功能表面,控制表面润湿性,细胞定植和增强的摩擦学特性[17]。
ART/IVF/不孕症临床艺术/IVF(卵巢刺激,优化,生育力保留,排卵诱导)生殖遗传学(不孕症的遗传学,PGT-M/SR和PGT-A和PGT-A和PGT-A,MOSAICISS)胚胎学(通过培养基,培养基,时间,PG Time srysimity of Media,PGT,PGT),PGT,PGT,PGT,PGT,PGT-MA冷冻保存,体外成熟)术语(雄性性能不良,男性不孕)保存临床/IVF(卵巢刺激,治疗的优化,生育力保留,排卵诱导)生殖遗传学(遗传学)不孕(遗传学),PGT-M/SR/SR/SR和PGT-A,摩擦学(Emosaic)施加学(empry obsry oblyologicy obsry oblyologicy) PGT-M/SR和PGT-A,生存能力,冷冻保存,体外成熟的标记)雄科学(雄性性不良,男性不育)
对基于铝合金 6262 的混合金属基复合材料在干滑动条件下进行了摩擦学研究,该复合材料加入了不同重量百分比的碳化钨 (WC) 和二硫化钼 (MoS 2)。具体来说,碳化钨的加入量为 3%、6% 和 9%,而二硫化钼的加入量为 2%、4% 和 6%。这些混合复合材料的制造采用搅拌铸造技术。实验设计遵循 L27 正交阵列,并采用田口优化来确定输入参数的最佳组合。采用正交阵列、信噪比和方差分析来研究开发的复合材料的最佳测试参数。最佳配方可产生最小的磨损率和摩擦系数,即 9% WC、6% MoS2、负载为 10N、滑动速度为 1 m/s 以及滑动距离为 400 m。使用扫描电子显微镜 (SEM) 对 Al6262/WC/MoS 2 混合复合材料进行表征。
图2:(a)摩擦行为的系数显示MOS 2 -TI 3 C 2 t X固体润滑剂涂层在各种接触载荷下以0.1 m/s的单向滑动,作为干氮的滑动距离的函数。(b)稳态摩擦值与钢对钢,MOS 2-steel和ti 3 C 2 t x X-On-Steel引用并置。(c)在环境条件下在20 N和0.1 m/s下测量的摩擦系数与在干燥的氮条件下的摩擦相反,显示了湿度对摩擦学性能的影响。(d)钢基材上的涂料磨损是在相同距离滑动后正常负载的函数。摩擦被观察到随着正常载荷(接触压力)的增加而减小的,20 N测试条件超过了超级润滑性阈值的数量级(0.0034)。磨损率随着摩擦等负载的增加而降低。
这项研究探讨了机器学习指导设计在优化纳米化剂中的重要潜力,重点是减少机械系统中的摩擦和磨损。利用神经网络和遗传算法,研究表明了高级计算技术如何准确预测和增强纳米求的摩擦学特性。研究结果表明,与传统的矿物基油基润滑剂相比,纳米化剂,尤其是含石墨烯和碳纳米管的纳米化剂,在降低摩擦系数和磨损速率方面表现出明显改善。此外,这些纳米求的增强的热稳定性和载荷能力有助于大量的能源节省和提高的操作效率。这项研究强调了采用纳米化剂的经济和环境益处,强调了它们改变润滑技术并支持可持续工业实践的潜力。
微型和纳米结构的表面受到了广泛的关注,因为它们在传感器技术,表面摩擦学以及依从性和能量收集等广泛应用中的潜力。已经研究了几种修改材料表面,例如血浆处理,离子梁溅射,反应性离子蚀刻和激光处理等材料表面[1-3]。在这些方法中,由于其良好的空间分辨率和对不同材料(例如金属,半导体,介电和聚合物)的良好空间分辨率和高可重现性,激光表面处理近年来引起了人们的兴趣[4-6]。从连续波(CW)到超短梁以及从UV到IR的工作波长已经使用了许多类型的激光源[7-8]。由于激光 - 物质相互作用,从纳米到微尺度的各种结构和模式取决于激光参数和材料特性,例如激光诱导的周期性表面结构(LIPS),2D圆形液滴和特定的微型结构,称为Spikes [9-14]。