系统规格激光类EDM。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。激光1类激光指针同轴(标准)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。激光2类总产品激光类。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。经典激光2圆形级别水平级别。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8'/2 mm(8'/0.007 ft)电子2轴在LC-Display中取出,分辨率为。。。。。。。。。。。。0.3“(0.1 mgon) 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。0.3“(0.1 mgon)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。115度/秒(128 gon/sec)旋转时间面对面对2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2.6秒定位时间180度(200 gon)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2.6秒夹具和缓慢的运动。。。。。。。。。。。。。。。。。。。伺服驱动的,无尽的良好调整中心系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。三针光学下降。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。内置的光直面放大倍数/最短的焦点距离。。。。。。。。。。2.3×/0.5 m – Infinity(1.6英尺 - infinity)望远镜放大倍率。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30倍孔。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>在100 m(328 ft)处的40 mm(1.57英寸)视场。。。。。。。。。。。。。。。。。。。。。。在100 m处2.6 m(328 ft时8.5英尺)最短的焦点距离。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 1.5 m(4.92 ft) - 含有照明的十字准线。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 变量(10个步骤)电源内部电池。 。 。 。 。 。 。在100 m处2.6 m(328 ft时8.5英尺)最短的焦点距离。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.5 m(4.92 ft) - 含有照明的十字准线。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 变量(10个步骤)电源内部电池。 。 。 。 。 。 。1.5 m(4.92 ft) - 含有照明的十字准线。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。变量(10个步骤)电源内部电池。。。。。。。。。。。。。。。。。。。。。。。。。。。。可充电锂离子电池11.1 V,5.0 AH操作时间5一个内部电池。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。大约 6.5小时,三个内部电池在多板适配器中。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 大约 带有一个内部电池的20小时机器人持有人。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。大约6.5小时,三个内部电池在多板适配器中。。。。。。。。。。。。。。。。。大约 带有一个内部电池的20小时机器人持有人。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。大约带有一个内部电池的20小时机器人持有人。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13.5小时的重量和尺寸仪器(Autolock)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5.4 kg(11.35磅)仪器(机器人)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5.5千克(11.57磅)三杆铜控制器。 。 。 。 。 。 。 。 。 。 。 。 。13.5小时的重量和尺寸仪器(Autolock)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5.4 kg(11.35磅)仪器(机器人)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5.5千克(11.57磅)三杆铜控制器。 。 。 。 。 。 。 。 。 。 。 。 。5.4 kg(11.35磅)仪器(机器人)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5.5千克(11.57磅)三杆铜控制器。 。 。 。 。 。 。 。 。 。 。 。 。5.5千克(11.57磅)三杆铜控制器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。0.4 kg(0.88磅)的三元。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。0.7千克(1.54磅)生日电池。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。0.7千克(1.54磅)生日电池。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。0.35 kg(0.77磅)曲纳轴高度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。196毫米(7.71 in)其他交流。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。USB,串行,蓝牙®6工作温度。。。。。。。。。。。。。。。。。。。。。。。。。。–20ºC至+50ºC(–4ºF至+122ºF)存储温度。。。。。。。。。。。。。。。。。。。。。。。。。。–40ºC至+70ºC(–40ºF至+158ºF)内置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。在所有型号中都可以使用灰尘和水。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。IP65湿度。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 100%冷凝安全性。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。IP65湿度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。100%冷凝安全性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。双层密码保护,L2P 9
烟雾控制系统指南Bactalk Systems Honeywell International Inc.保留所有权利。LTBT-MAN-SMOKE REV.0006 ... 1。烟雾控制系统的功能烟控系统通过在障碍物之间造成压力差异,以防止烟雾扩散到其他区域。NFPA 92A指南为这些系统提供了建议的压力范围。2。在烟雾控制过程中操作过程中的系统行为,空气处理程序的功能发生了变化。室外和排气阻尼器可能会完全打开,而返回空气阻尼器则关闭,以最大程度地提高室外空气和建筑排气,并有助于防烟和疏散。3。风扇类型和优势不同的供应风扇具有基于系统设计的优点和限制。例如,螺旋桨风扇可以在简单的单点注入系统中为楼梯间提供空气。4。划分烟雾控制系统划分系统使用机械风扇来创建压力差异和气流限制,从而限制了火区的烟雾运动。这将烟雾集中在该区域,使其站不住脚。5。建筑设备和控制建筑设备和控制(例如HVAC系统)可以用于划分烟雾控制。这些系统使用外部空气来产生障碍物的压力差异。风扇驱动的终端单元接收可变的原发冷却空气和返回空气的空气量,并结合使用恒定的供应空气量。6。烟雾控制系统很复杂,只能由合格的工程师设计。系统要求每个烟控系统配置应满足特定要求,包括: - 粉丝操作时间:60秒或更少 - 减震器旅行完成:75秒或更少7。组件性能和UL认证烟雾控制系统必须采用时间表格式定义,其中包括NFPA 92A中概述的参数,例如火区激活和风扇速度。警报制造符合UL 864/UUKL要求的组件,以用于烟雾控制系统设备。是设计师和安装人员的责任,以确保其特定系统符合地方当局的要求。警报提供了用于烟雾控制的各种组件,例如Bactalk Integrator-S(BTI-S)和其他现场控制器,可以将其整合到设计中。这些组件应与列出的消防员的烟雾控制站(FSC)一起使用,每项工作都需要制造商之间的协作来生产自定义面板。ul需要子系统之间的牢固连接以进行无缝集成。选择组件时,UL建议将Alerton烟雾控制单元与其他兼容系统零件组合在一起。例如,烟雾控制系统可能会包含来自各种供应商的火灾警报控制单元和烟雾阻尼器。连接到BTI-S时,仅使用UL上市的烟雾控制系统设备,例如差压力开关或流动站,以监视风扇并将信号返回到系统。这些设备提供了用于最终过程验证和故障时故障信号的自我测试功能。表1中显示了样本时间表。FACU(1)的操作是由火灾信号设备(FSD)触发的,该设备关闭了与该区域相对应的后继触点。FSC(2)检测到此触点闭合并将其传达给EIA-422 Modbus的主要BTI-S(3)。一旦清除了所有烟雾状况指标,系统就会恢复正常操作。提供烟雾控制应用程序作为指南,需要审查和修改以符合特定的安装和项目要求。系统设计师负责完成机械设计并验证概念。一个仓库示例描述了一个安装在单层建筑物中的区域烟雾控制系统,该建筑物设有四个烟雾控制区,每个烟雾控制区都有自己的空气处理单元,并由烟雾屏障隔开。解决方案触发了终端开关,主要BTI-S检测到该开关,在FSC上指挥LED。命令其他区域(1、2和4)中的Ahus供应迷,而返回粉丝则被命令。在仓库示例中,用于烟雾控制功能的组件包括FSCS布局。要实现解决方案,请在表或时间表中定义每个烟雾控制模式,以列出专用和非精确设备及其对烟雾报警条件的各自响应。高层烟控系统指南强调加压和划分烟雾控制,尤其是在Penthouse AHU VLC-1188-S装置中。该系统包括每个楼层的专用排气阻尼器,除第四层以外,在其他楼层的供应空气阻尼器被打开的同时开放。留出空间进行电线连接。在高层建筑物中,消防员使用烟雾控制站,在各个楼层的空气阻尼器内部和内部装有排气空气阻尼站。主要BTI-S和火灾警报控制单元等组件促进了烟雾控制功能。还使用了由VLC-1188-S或VAV-SD-S控制的专用楼梯间加压风扇。警报设备在烟雾控制系统中提供了不同的优势,尤其是其以太网和MS/TP网络体系结构。烟雾探测器可以连接到由警报批准的VLC连接,以进行烟雾检测。编程允许从FSCS面板上以优先级数组索引1。BTI-S系统利用AV-0至AV-799范围内的自动驾驶汽车(AVS)来控制火灾抑制控制系统(FSC)上的LED状态和可听见的信号。可以将LED和Audible信号配置为四个不同的状态,与AV范围内的特定值相对应。有关设置和配置,请参阅使用Bactalk操作员工作站软件提供的指南。要设置带有字母分页的警报处理程序,请按照以下步骤: - 创建一个包括Pager作为接收者的警报处理程序。- 将工作站添加到未来添加的收件人列表中。另外,在订购FSCS面板时,请确保与模型系列ALR-XXXXX匹配以保证Modbus支持。系统设计人员可以选择具有串行连接的任何列出的打印机。OKI数据Microline 320 Turbo打印机已使用警报系统组件进行了测试,并需要单独的串行卡以进行连接。安装和接线VLCA -1688模块时,请按照以下准则: - 安装前仔细阅读所有说明。- 遵守国家电代码法规和地方当局的要求,以避免潜在的伤害或设备损坏。- 按照图1中概述的特定安装程序将单元安装在DIN轨或墙上。要将VLCA-1688安装在墙上,以任何方向放置并使用标准螺钉将其固定。设备的尺寸为9.06“ x 1.5”。安装后,将电线连接如下:应将以太网电缆连接到RJ-45 Jack,该插孔将根据集线器或开关功能自动检测10或100 Mbps的速度。对于MS/TP连接,使用屏蔽的,扭曲的配置电缆,阻抗在100到130Ω之间,电容在某些极限以下。VLCA-1688有13个用于I/O接线的端子块(第2页)。使用扭曲的对18AWG屏蔽电缆减少电干扰。接地仅盾牌排水线的一端。要简化现场接线,请从设备上卸下端子块,连接电线,然后重新安装。端子块还有助于简单的单位更换。用于电线连接:剥离外套的3/8英寸,将调整螺钉逆时针旋转以分开夹具,插入剥离的端端,以便用块齐平,用螺钉固定,用螺钉固定,检查是否可以通过轻轻拉动电线来固定。最后,将VLCA-1688从列出的2类变压器连接到24VAC功率,并保持接线极性。(注意:根据指南,我随机选择“添加拼写错误(SE)”方法并将其应用于文本。重写文本维护原始含义并遵守此方法的特征。)
3D打印的医疗用途正在快速扩展,并且会改变医疗保健的大时间。这些用途可以分为四个主要领域:制造组织和器官,创建定制的植入物和假肢,对药物进行研究,并弄清楚如何将药物置于体内正确的位置。在医学中使用3D打印可以使诸如假肢,设备甚至药物之类的东西为每个人进行超级定制,这真的很酷。它还使事情变得更便宜,帮助人们更有效地工作,让任何人都可以在不需要花哨的机器的情况下设计东西,并将科学家聚集在一起从事项目。,但这并不是所有的阳光 - 在3D打印之前,仍有许多科学和监管挑战确实可以改变医疗保健。人们一直在医学上的3D打印中取得了重大进步,但他们仍在等待最具游戏规则的东西。通过3D打印制造的自定义助听器彻底改变了听力学领域,超过99%的现代助听器是针对个人用户量身定制的。人体的独特复杂性使3D打印模型对于手术制备必不可少,比传统的2D成像方法提供了更准确的表示。此外,神经外科医生可以从3D打印模型中受益,以更好地理解复杂的人体解剖结构。在许多情况下,这些模型有助于医学专业人员在手术前对患者的特定解剖学特征获得宝贵的见解。3D打印技术的最新进步正在彻底改变包括医学在内的各个领域。此外,3D打印的进步导致了定制的药物配方和新型剂型的形式,例如微胶囊和纳米舒张,这对个性化医学有希望。3D打印在医疗应用中的潜在好处包括增加定制和个性化,成本效率,提高生产率,民主化和协作。尽管有希望的应用,但3D打印仍面临一些挑战,包括不切实际的期望和炒作,安全和保安问题,专利和版权问题。虽然已经使用了某些应用程序,但例如器官打印等其他应用程序需要更多的时间来开发。可以在线找到有关3D打印医学应用程序的综合报告,其中包含详细的图像和说明。国家医学图书馆(NLM)提供了对科学文献的访问权限,并维护了一个数据库,其中包含有关医学中3D印刷的信息。但是,将其包含在其数据库中并不意味着与NLM或国家卫生研究院的内容认可或同意。最近的一篇文章回顾了将3D打印应用于医疗领域的一些最新发展,涵盖了当前的艺术状况以及用于医疗应用的3D打印的局限性。美国测试与材料学会(ASTM)国际委员会F42采用了添加剂制造(AM)来从三维数字数据中产生物理对象的技术。手术规划已演变为合并高级技术。在一项研究中,Vodiskat等。添加剂制造(通常称为3D打印)是一种制造方法,可以通过将材料融合或将材料融合到底物上或将物质融合或沉积物质来创建物体。此过程具有高度的用途,可以利用各种材料,例如粉末,塑料,陶瓷,金属,液体或活细胞。通过研究复杂的器官或解剖标本的解剖学和生理学,外科医生可以为操作创建个性化计划。3D模型使他们能够在进入手术室之前探索不同的方法并获得动手经验。此过程大大减少了操作时间并改善了结果。3D印刷患者特定的假体的最新进展使残疾人能够过正常生活。高质量的成像技术允许精确的解剖假体创建,影响包括牙科在内的各个医学领域。将尸体材料用于培训引起了道德问题和成本问题。3D打印通过从CT成像中重现复杂的解剖器官提供了一种新颖的解决方案,适用于没有尸体的情况。能够打印不同尺寸的多个副本的能力也有益于培训设施。可以直接印刷细胞的打印机的开发导致了毒性测试的细胞结构的自动产生,并针对疾病和肿瘤进行了新的治疗方法。这项技术通过允许对匹配天然细胞排列的组织的可重复打印来加速研究过程。使用3D打印模型来对复杂的先天性心脏状况进行术前计划。医学研究的应用包括生产人体器官和组织结构,将它们与模仿本地人体器官的功能相结合。下一步是在操作过程中打印可移植的器官或器官,彻底改变医学。药物输送也将随着3D打印成为药品不可或缺的一部分,可以实现指定剂量和持续的释放层。使用3D打印技术可以实现个性化治疗,并通过创建针对其解剖结构的定制药物输送设备来帮助患者减少药物。这些进步表明,3D打印正在改变医学,许多应用程序使进行详尽的审查变得具有挑战性。最近的几项研究集中在特定领域,例如组织和器官的医学成像,手术和生物打印。本综述旨在通过研究各种应用程序(包括个性化处理,术前计划模型和定制的药物输送设备)来检查2014年以来的发展,从而证明当前的艺术状况。他们采用了两种不同的市售技术来重建三名患者的缺陷,得出结论,有了良好的CT扫描数据,可以创建一种具有成本效益的3D印刷模型。另一个具有挑战性的区域是旧骨盆骨折手术,其中Wu等人。评估了在四年和9个临床病例中使用3D打印的骨盆模型进行术前计划。他们发现术前计划与术后结果之间有良好的相关性,但建议进一步研究以巩固这些模型的使用。Truscott等人。提出了3D打印模型的案例研究,这些模型可以帮助外科医生进行术前计划,从而从骨盆和股骨,眼窝和肩cap骨的CT扫描数据创建模型。他们使用激光插入技术从钛中脱颖而出,与CNC工艺相比,结论一下将材料废物最小化。研究人员使用3D打印技术成功地创建了耳朵假肢(PVDF)。假体对压力变化表现出很高的敏感性,表明在生物医学工程中使用了潜力。传统的患者特异性颅骨成形术假体很昂贵。相比之下,一种具有成本效益的方法使用丙烯酸骨水泥。但是,水泥的手动制造可能很麻烦,可能不会产生令人满意的结果。使用FDM创建了CT扫描数据的3D打印头骨,作为模板来塑造丙烯酸植入物。这种方法在临床环境中的有效性需要进一步研究。一种新型的陶瓷制造技术,结合了冻结的泡沫,实现了开放式孔连接的泡沫结构,可以用作下一代骨骼替代材料,用于个性化植入。提出了一种创建周期性蜂窝结构的设计方法,由材料制成的3D打印植入物将满足较轻的植入物的要求并满足审美和功能需求。最近的研究还使用了3D打印来再现具有精确反映个人特征的组织的巨大潜力的患者特异性组织材料。Khaled等。 Goyanes等。Khaled等。Goyanes等。3D打印模型在解剖学上是准确的,只要提供高质量的CT扫描数据。但是,它们可能不灵活,这使得在涉及大脑(大脑)的软组织的情况下进行应用。使用组合的3D打印,成型和铸造的一种建议的方法创造了逼真的,生理准确和可变形的人脑模型。研究人员已使用独特的技术成功地创建了个性化的大脑模型。这种突破允许创建解剖上准确且可变形的大脑模型,可用于手术计划或医学训练(图3)。此外,科学家还开发了具有成本效益的方法来生产人类解剖学对象的高质量复制品,以进行培训。3D打印技术的发展也导致了癌症研究的重大进步。通过使用HeLa细胞和水凝胶结构创建合成宫颈肿瘤,研究人员已经能够研究该疾病的生长和行为(图4)。这种创新的方法显示出令人鼓舞的结果,肿瘤增殖得更快并形成细胞球体。此外,生物打印已通过微流体网络引导细胞来创建复杂的组织结构。Drexel University的研究人员开发了定制的沉积设备,可以精确材料沉积和异质细胞共培养(图5)。在另一个突破中,科学家使用了3D打印的水凝胶支架来种植微藻和人类细胞的培养物。生物制造。2016; 138(4):041007。2016; 138(4):041007。微藻能够迅速生长,叶绿素含量在几天内增加了16倍。该技术有可能将氧或二级代谢物作为治疗剂提供。技术与生物学的交集导致了3D生物打印的开创性进步。康奈尔大学的研究人员成功地使用水凝胶作为细胞的脚手架打印了全尺寸三叶心脏瓣膜,展示了它们在医疗应用中的潜力。但是,他们指出原型的拉伸强度需要改进。爱丁堡的研究人员通过使用3D打印技术打印功能“迷你肝”,取得了重大进步。他们的创新在于保留3D藻酸盐水凝胶基质中脆弱的臀部细胞的生存力和多能性。这项工作对无动物的药物试验和个性化医学具有深远的影响。超出人体器官的范围,研究人员创建了一个3D形态空间,以描述各种尺度(包括细胞和动物生物)的生物结构。此工具使他们能够探索新的生物配置并研究有关进化的基本问题。此外,伦敦大学学院的研究人员还表明,在制造局部药物输送系统以治疗痤疮等疾病中,有3D生物打印的潜力。他们使用热熔体挤出将水杨酸加载到商业聚合物丝中,突出了该技术的多功能性。3D打印的多功能性可通过调整丝制剂来进行不同的剂量。3D打印技术因其在创建个性化医疗设备(包括药物片和假肢)方面的潜在应用而进行了探索。研究人员发现,立体光刻(SLA)方法可以生产具有精确接触甚至剂量输送的设备。使用桌面3D打印机成功打印了甲烯烃双层片,证明了其产生高质量药物片的潜力。他们比较了药物释放曲线,发现在14小时剂量周期中,一种设计保留在商业药物概况的10%之内。通过使用FDM工艺打印paracetamol的细丝,研究了不同形状对药物释放曲线的影响。他们的结果表明,使用传统方法很难制造复杂的几何形状,但可以更好地控制药物释放。3D印刷和医学生物印刷方面的最新发展在各个领域都具有巨大的潜力。在手术中,3D印刷模型可以帮助外科医生进行计划操作,缩短程序时间和改善结果。也可以快速,经济地创建特定于患者的假肢,使其成为传统解决方案的有吸引力的替代品。Zhao等,Snyder等人和Lode等人等研究人员的工作。已经证明了更准确的疾病模型的潜力,尤其是在癌症研究中。将微流体与3D生物构成整合起来,可以创建复杂的组织结构和共培养物,为功能器官的发展铺平道路。2014; 6(3):035001。 doi:10.1088/1758-5082/6/3/035001。目前,打印整个生物器官仍然是一个遥远的目标。虽然细胞打印可以产生强大的细胞培养,但创建具有必要结构完整性的结构仍然是一个重大挑战。水凝胶矩阵,印刷技术和微流体的整合是通过生物打印来开发功能性人造器官的关键步骤。在不久的将来,3D打印机可能在药房中很普遍,从而实现了个性化的药物输送和制造定制设备。例如,可以通过控制几何形状和精度来实现具有控制药物释放的打印平板电脑。3D印刷在医学中的应用是巨大而变革性的,从创建一次性物体到假肢。随着研发的继续,我们可以期望在个性化药物,器官印刷和手术计划等领域取得令人兴奋的进步。但是,这些技术仍处于早期阶段,需要在广泛采用之前进行进一步的创新和实际考虑。本文讨论了3D打印技术的应用和进步,尤其是在医学领域。作者参考了各种研究和研究论文,探讨了3D印刷在医学中的潜在用途,包括创建假肢,植入物和生物印刷。引用的论文涵盖了一系列主题,从钛植入物的生物相容性到开发用于测试药物毒性的芯片技术。几项研究探讨了3D打印在手术和医学中的使用。生命科学工程学。讨论的其他领域包括三维生物印刷,医学成像和假肢的计算机辅助制造。一些好处包括提高手术计划中的准确性和精度,减少了传统方法上花费的成本和时间,以及改善患者的结果。研究人员还使用3D打印来为具有独特需求的患者创建定制的植入物和假肢。3D印刷在医学中的其他应用包括为训练目的创建实际的器官和组织模型,开发了个性化的神经外科手术计划的大脑模型,以及用诸如压力和温度等内在特性的感觉耳朵假体制造感觉耳朵假体。研究还研究了使用3D打印来生产患者特异性的丙烯酸颅骨成形术,定制的骨盆损伤模板和具有量身定制的机械性能的功能多孔结构。此外,研究人员还探索了用于生物医学应用的陶瓷和金属陶瓷复合材料的创新制造方法。3D打印在手术中的优点包括其创建复杂形状和结构,减少废物和材料消耗的能力,并提高手术计划的准确性和精度。但是,这项技术也存在一些挑战和局限性,例如对专业设备和专业知识的需求以及对灭菌和感染控制的潜在关注。总体而言,3D打印有可能彻底改变手术和医学的各个方面,从术前计划到植入植入物和患者护理。2015; 15(2):177–183。2015; 15(2):177–183。Zhang等人,用于体外Zhang T,Zhang T,Cheng S,Sun W.宫颈肿瘤模型的HeLa细胞三维印刷。Zhang等人,用于细胞设备的微流体歧管制造Snyder J,Son AR,Hamid Q,Sun W.通过精确挤出沉积和含细胞装置的复制模制来制造微流体歧管。制造科学与工程杂志。lode等人,绿色生物打印Lode A,Krujatz F,BrüggemeierS,Quade M,SchützK,Knaack S,Weber J,Bley J,Bley T,Bley T,Gelinsky M. Green Bioprinting:光合作用藻类Laden Hadegae Laden Hydogel scapforts的生物性和医学物质。duan等人,异质主动脉阀Conduits Duan B,Hockaday LA,Kang KH,Butcher JT的3D生物打印。与藻酸盐/明胶水凝胶异质主动脉瓣导管的3D生物打印。生物医学材料研究杂志研究部分A。2013; 101(5):1255–1264。 Faulkner-Jones et al., Bioprinting of human pluripotent stem cells Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. 生物制造。 2015; 7(4):044102。 ollé-Vila等,合成器官和类符号的形态 - ollé-vila A,Duran-Nebreda S,Conde-Pueyo N,MontañezR,SoléR。 综合生物学。 2016; 8(4):485–503。 受控释放杂志。 2016; 234:41–48。2013; 101(5):1255–1264。Faulkner-Jones et al., Bioprinting of human pluripotent stem cells Faulkner-Jones A, Fyfe C, Cornelissen DJ, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.生物制造。2015; 7(4):044102。ollé-Vila等,合成器官和类符号的形态 - ollé-vila A,Duran-Nebreda S,Conde-Pueyo N,MontañezR,SoléR。综合生物学。2016; 8(4):485–503。 受控释放杂志。 2016; 234:41–48。2016; 8(4):485–503。受控释放杂志。2016; 234:41–48。2016; 234:41–48。Goyanes等人,3D扫描和印刷,用于个性化药物交付Goyanes A,Det-Amornrat U,Wang J,Basit AW,Gaisford S. 3D Scanning和3D打印作为用于制造个性化局部药物输送系统的创新技术。Khaled等人,桌面3D打印的受控释放制药双层片Khaled SA,Burley JC,Alexander MR,Roberts CJ。桌面3D打印受控释放的药品双层平板电脑。国际药品杂志。2014; 461(1):105–111。 Goyanes等人,几何形状对3D印刷片剂Goyanes A,Martinez PR,Buanz A,Basit AW,GaisfordS。几何形状对3D印刷平板的药物释放的影响。 国际药品杂志。 2015; 494(2):657–663。2014; 461(1):105–111。Goyanes等人,几何形状对3D印刷片剂Goyanes A,Martinez PR,Buanz A,Basit AW,GaisfordS。几何形状对3D印刷平板的药物释放的影响。国际药品杂志。2015; 494(2):657–663。2015; 494(2):657–663。