该器件设计由两组铝 IDT 组成,放置在具有 128° YX 切口的铌酸锂基板上。作为初步步骤,基于器件的几何周期 200 μm,模拟了器件的缩小单元域。模态分析确定了瑞利波的共振频率,该频率用于后续的谐波研究。两组 IDT 在该频率下受到激励,并分析了由此产生的驻波模式。还检查了器件在共振频率下的导纳。在将模型扩展到完整器件之前,进行了时间相关分析以研究波产生的瞬态阶段。
摘要:基因组编辑,特别是使用 CRISPR-Cas9,是操纵基因组(包括大肠杆菌)的有力工具。本研究旨在利用 CRISPR-Cas9 对大肠杆菌中的 lacZ 基因进行遗传工程改造,以评估其在红薯皮(Ipomoea batatas)深层发酵过程中在淀粉酶产生中的作用。在 37ºC、pH 6.2、7.0 和 8.4 条件下培养编辑型和野生型大肠杆菌,并使用硫酸铵纯化所得淀粉酶。使用淀粉作为葡萄糖源筛选淀粉酶的产生,并在不同温度和 pH 水平下进行酶表征。没有向导 RNA (gRNA) 和阿拉伯糖的 CRISPR-Cas9 编辑的大肠杆菌显示蓝色菌落,而有 gRNA、Cas9 但没有阿拉伯糖的 CRISPR-Cas9 编辑的大肠杆菌没有菌落。用 Cas9 和阿拉伯糖但不加 gRNA 编辑的大肠杆菌也产生了蓝色菌落。当暴露于 Cas9、gRNA 和阿拉伯糖时,菌落表现出白色表型。凝胶电泳显示,暴露于 Cas9 和阿拉伯糖的大肠杆菌在 650 bp 处有两条带,而暴露于不含 gRNA 和阿拉伯糖的 Cas9 的蓝色菌落则在 1,100 bp 处显示条带。阳性对照显示三条不同的条带,而阴性对照没有。淀粉酶筛选显示野生型大肠杆菌和 CRISPR 编辑的大肠杆菌有相似的透明区。在发酵 15 天期间,pH 8.4 为野生型大肠杆菌的生长提供了最有利条件,pH 7.0 为 CRISPR 编辑的大肠杆菌的生长提供了最有利条件。温度和 pH 值测定表明,野生型和 CRISPR 编辑的大肠杆菌在 45ºC 和 pH 7 下均表现出相似的最大淀粉酶活性,酶产量没有显着差异。这些结果表明 lacZ 基因对大肠杆菌中的淀粉酶产生没有显着影响。 DOI:https://dx.doi.org/10.4314/jasem.v28i10.5 许可证:CC-BY-4.0 开放获取政策:JASEM 发表的所有文章均为开放获取文章,任何人都可以免费下载、复制、重新分发、转发、翻译和阅读。版权政策:© 2024。作者保留版权并授予 JASEM 首次出版权。本文的任何部分均可未经许可重复使用,但必须引用原始文章。引用本文为:MINARI, J. B; NWOSU, GE; DADA, I. S; ABDULAZEEZ, DO (2024)。使用马铃薯皮(Ipomea batata)作为酶源,分离和表征由 CRISPR-Cas 9 编辑的 LacZ 基因和未编辑的大肠杆菌产生的淀粉酶。应用科学与环境管理杂志 28 (10) 2981-2989 日期:收到日期:2024 年 7 月 7 日;修订日期:2024 年 8 月 15 日;接受日期:2024 年 8 月 19 日出版日期:2024 年 10 月 5 日关键词:CRISPR Cas9 基因编辑、lacZ 基因、大肠杆菌、马铃薯皮发酵、淀粉酶理想的代谢催化剂是酶,它通过明确定义的途径提供各种内源性生化反应。(Singh 等人,2019 年)。由于酶存在于所有自然界物种中,包括植物、动物、和微观微生物,它们可用于工业用途。此外,在受控情况下,各种微生物酶被识别
摘要 - 模仿学习在使用相机的视觉反馈执行高精度操纵任务方面具有巨大的潜力。但是,在模仿学习的常见实践中,将摄像机固定在适当的位置,从而导致遮挡和有限的视野等问题。此外,摄像机通常被放置在宽阔的一般位置,而没有特定于机器人任务的有效观点。在这项工作中,我们研究了主动视力(AV)对模仿学习和操纵的效用,在该工作中,除了操纵政策外,机器人还从人类的演示中学习了AV政策,以动态地改变机器人的相机观点,以获取有关其环境和给定任务的更好信息。我们介绍了AV-Aloha,这是一种带有AV的新型双层远程处理机器人系统,AV的扩展是Aloha 2机器人系统的扩展,并结合了一个仅携带立体声摄像机的额外的7多型机器人臂,仅负责找到最佳视图点。此相机将立体视频流向戴着虚拟现实(VR)耳机的操作员,使操作员可以使用头部和身体运动来控制相机的姿势。该系统提供了具有双层第一人称控制的身临其境的远程操作体验,从而使操作员能够动态探索和搜索场景并同时与环境进行交互。我们在现实世界和模拟中对系统进行模仿学习实验,这些任务强调观点计划。项目网站:https://soltanilara.github.io/av-aloha/我们的结果证明了人类引导的AV在模仿学习中的有效性,显示了可见性有限的任务中固定相机的显着改善。
介电性手性超脸是一种新型的平面和高效的手性光学设备,显示出强圆形二分法或光学活动,在光学传感和显示中具有重要的应用潜力。然而,传统手性跨面中的两种类型的手性光学反应通常是相互依存的,因为它们对正交圆形极化组件的幅度和阶段的调节是相关的,这限制了芯Riral Meta-devices的进一步进展。在这里,我们提出了一种新的方案,用于独立设计手性跨膜的圆形二色性和光学活性,以进一步控制传输波的极化和波前。受到手性分子异构体的混合物的启发,我们使用介电异构体谐振器形成“超级单元”,而不是Terahertz带中的手性反应,而不是单个元原子,这被称为Racemic Metasurface。通过在元原子和“超级单元”之间引入两个级别的pancharatnam-berry阶段,可以在没有远场圆形二科运动的情况下进行极化旋转角度和梁的波前。我们通过模拟和实验证明了该方案的Terahertz波的强大控制能力。此外,这种具有近场手性但没有远场圆形二分法的新型设备在光学传感和其他技术中也可能具有重要价值。
为了支持我们致力于促进金融市场的完整性的承诺,全球交流联合会(WFE)启动了一个研究项目,以更好地了解世界各地如何定义和惩罚市场,尤其是考虑到新技术和社交媒体所带来的挑战。为此,在2022年,我们对WFE成员和分支机构进行了一项调查,以收集有关各种定义,监视机构以及用于打击跨司法管辖区市场操作的各种定义,监视机构和监管框架的信息。然后,我们应用文本分析工具来确定定义和惩罚文本中的共同点和差异。据我们所知,这是从这个角度分析全球对市场操纵的定义。
太阳陈1,2,3,玛塔·霍卡4,菲利普·戴维5,Yaqi Sun 2,Fei Zhou 3,Tracy Lawson 5,Peter J. Nixon 4,Yongjun Lin 3,lu-niw Liu 2,6 * 1 Guangdong guangdong guangdong guangdong省级利用和药物保存和北部北部的省级北部。 512000,中国2分子与综合生物学研究所,利物浦大学,利物浦大学,利物浦L69 7ZB,英国3号国家遗传改善的国家主要实验室和国家植物基因研究中心,瓦兹胡农农业大学,武汉,瓦汉430070,430070,430070 2AZ,英国5日生命科学学院,埃塞克斯大学,科尔切斯特CO4 4SQ,英国6海洋生命科学学院和中国海洋深海洋多球和地球系统的边境科学中心,中国海洋大学266003,中国 *通讯 *通信:luning.luning.luiu@luning@liverpool.ac.ac.ac.uk(l.-n.-n.l.-n.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l>摘要尽管Rubisco是全球最丰富的酶,但由于其营业率低和区分CO 2和O 2的能力有限,碳固定效率低下,尤其是在高O 2条件下。为了解决这些局限性,包括蓝细菌和藻类在内的浮游植物已经进化了CO 2浓缩机制(CCM),这些机制涉及在特定结构内将Rubisco划分的rubisco,例如在藻类或藻类中的cyanobacteria或Pyrenacoids中的羧基助理。工程植物的叶绿体建立了类似的结构来分隔Rubisco,这引起了人们对改善作物植物中光合作用和碳同化的兴趣。在这里,我们提出了一种方法,可以通过遗传融合的超纤维纤维构成超级纤维绿色荧光蛋白(SFGFP)在烟草中有效地诱导内源性rubisco的凝结(Nicotiana tabacum)叶绿体。通过利用SFGFP的固有寡聚特征,我们成功地创建了类似pyrenoid的Rubisco冷凝物,这些冷凝物在叶绿体中显示动态的,类似液体的特性,而不会影响Rubisco组装和催化功能。转基因烟草植物与野生型植物相比表现出可比的自养生长速率和环境空气中的完整生命周期。我们的研究提供了一种有希望的策略,可以通过相分离调节植物叶绿体中的内源性Rubisco组装和空间组织,这为生成合成细胞器样结构的基础为碳固定的碳固定结构(例如羧化合物和吡啶样),以优化光合效率。关键字:Rubisco;碳固定;光合作用;叶绿体工程;相位分离;蛋白质冷凝;植物生物技术
从无人机中受益匪浅的重要研究领域是精确农业,因为它们具有出色的空间分解能力,因此非常适合对蔬菜斑块进行详细的小规模分析。据我们所知,很少有研究应用无人机来探索诸如果园之类的复杂森林环境,通常依靠间接的甲基化来获取作物信息。在这项工作中,我们提出了一种新的方法,可以使特征的测量(例如分别测量水果或茎/叶)进行评估,以评估其成熟度或检测作物疾病。为了实现这一目标,我们引入了一种名为“ Sambot:球形空中ma-nipulator机器人”的新设计,该设计由一个由球形结构保护的迷你UAV组成,其前部有一个固定的操纵器。sambot与机械手的访问空间的能力相结合的球形脱落的保护益处。拟议的设计与ROS2兼容,ROS2是机器人研究和工业应用中广泛使用的框架。我们提议的范围的潜在应用范围范围超出了精确农业的范围,这些地区范围内,诸如矿山或崩溃的建筑物,结构检查以及自主地下导航等地区的搜索和救援区域。
摘要 - 能够学习新型操纵任务的自主机器人系统有望将行业从制造业转变为服务自动化。然而,当前方法(例如,VIP和R3M)仍然面临重大障碍,尤其是机器人实施例之间的域间隙以及在特定动作空间内成功执行成功的任务执行的稀疏性,从而导致了错误和模棱两可的任务。我们介绍了AG2Manip(操纵的代理 - 不合稳定代表),该框架旨在通过两个关键的创新来解决这些挑战:(1)源自人类操纵视频的代理人视觉表示,并具有实施方案的细节,以增强普遍性; (2)代表机器人的运动学代表到通用代理代理,强调了终端效果和对象之间的关键相互作用。ag2manip在模拟基准中进行了经验验证,显示出325%的性能提高而不依赖于域特异性演示。消融研究进一步强调了代理 - 不合稳定的视觉和作用表示对这一成功的基本贡献。将我们的评估扩展到现实世界,AG2Manip很明显地将模仿学习成功率从50%提高到77.5%,这表明了其在模拟和真实环境中的有效性和可推广性。
我最深的gra6tude去了Toyah,在我们在一起的整个旅程中,您坚定不移的支持,支持和宝贵的帮助,我深表感谢。在过去的几年中,您一直是我一生中的支柱,而您的无与伦比的爱,posi6vity和气泡的个性在我的生活和本文项目中一直是基础。感谢您一直在我身边,通过所有的跌宕起伏,即使我怀疑自己,也相信我。我感谢我们在一起探索世界时创造的许多回忆。从我们在瑞典的随机旅行到Croa6a的出色现场音乐棒,从乌云密布的都柏林到Bra6slava的城堡,从肯尼亚的Safaris到Pi6gliano的街头散步,每一刻都是一个珍贵的冒险。感谢您总是有故事要分享,并且永远不会用尽任何事情来谈论。您的存在是Inspira6on和力量的持续来源。Asante Sana。Asante Sana。