摘要 摘要 © 2020 Elsevier BV Li2S 作为锂硫正极材料的潜在候选材料的商业化因其低电子电导率、“穿梭效应”和初始能垒而受到阻碍。在这项工作中,通过基于溶液的化学方法制备了纳米级 Li2S 颗粒涂覆的碳纳米纤维。受益于这种合成方法,可以获得均匀的 Li2S 层而没有任何团聚。由于 Li2S 颗粒的尺寸较小,在第一次充电过程中观察到较小的能垒,这意味着以较小的截止电压更容易激活 Li2S。此外,碳纳米纤维作为基质可以增强正极的导电性。此外,为了验证所制备材料的潜在实际应用价值,我们制备了活性材料负载量高(约 3 mg cm−2)的 Li2S 正极,其表现出优异的循环和倍率性能,在 0.1C 时初始比容量为 916.2 mA hg−1,在 2 C 时仍可达到 321 mA hg−1 的容量。这种良好的性能可以归因于独特的基于溶液的合成方法,从而获得了涂覆在碳纳米纤维上的小而均匀的 Li2S 颗粒。
• 蓝色经济产业被视为改变游戏规则的因素,有助于创造收入、就业、投资和其他乘数效应,例如确保生物多样性和对国家经济的可持续发展义务。 • 包括马来西亚在内的全球都在考虑扩大蓝色经济的许多举措。 • 然而,到 2030 年,亚太地区成功过渡到可持续蓝色经济的资金缺口估计约为 5.5 万亿美元,其中最大的资金缺口在南亚、东南亚和太平洋地区,分别为 2.3 万亿美元、2.1 万亿美元和 1.1 万亿美元(亚洲开发银行,2022 年)。 • 因此,解决融资缺口仍然是关键问题。 • 在寻求替代融资来源以减少蓝色经济的融资缺口时,可以考虑伊斯兰社会融资 (ISF) 机制。
炎症性肠病(IBD)是一种影响胃肠道的慢性炎症性疾病。它威胁人类健康,并给社会带来很大的经济负担(Nakase等人2021),在过去的几十年中,发病率和患病率一直在增加(Nambu等人2022)。越来越多的研究表明,功能失调的免疫反应是肠道炎症和组织损伤的关键驱动力(Neurath 2019; Jiang等人。2022)。尽管IBD在肠道和气体界面中表现出来,但近年来,肠外表现(EIM)引起了很大的关注,这严重影响了IBD患者(Malik和Aurelio 2022)患者的生活质量。最近,作为EIM的牙周炎一直是一个问题(Malik和Aurelio 2022)。牙周炎是一种普遍且复杂的免疫感染性疾病,会引起牙周组织不可逆的炎症和牙齿结构的破坏(Abusleme等人2021)。破坏的宿主免疫稳态将促进牙周炎的发生和发展(Huang等人2021; Xu等。2021)。最近的研究表明,IBD患者表现出更严重的牙周炎(Schmidt等人2018)。牙周炎可能会在某些IBD患者中与临床症状较差相关(Imai等人2021)。研究
摘要:热量存储(TES)对于各种应用的吸收和释放大量外热至关重要。对于此类存储,相变材料(PCM)已被视为可以集成到发电机中的可持续能源材料。但是,纯PCM在相变过程中存在泄漏问题,我们应该使用一些支撑材料制造形式稳定的PCM复合材料。为了防止在阶段过渡过程中的泄漏问题,使用两种不同的方法,微囊化和3D多孔的效果,用于在这项工作中制造PCM复合材料。发现,微球和3D多孔气凝胶支持的PCM复合材料在熔化过程中保持其初始固态而没有任何泄漏。与微封装的PCM复合材料相比,3D多孔气凝胶支撑的PCM由于其高孔隙率而表现出相对较高的工作材料重量分数。此外,交联的石墨烯气凝胶(GCA)可以在内置过程中有效减少体积收缩,而GCA支持的PCM复合材料保持高潜热(∆ H)并形成稳定性。
摘要 - 本文使用从岩土技术研究和阶段2软件获得的数值分析和验证的实际现场数据提供了沿孟买 - Nagpur Expressway隧道的最终衬里的建议。是对正在进行的项目的实时研究,这可能对在隧道支持系统领域工作的各种研究人员和顾问有帮助。启动数据已用于背部分析,以确定在数值背部分析中要考虑的质量质量参数。分类已根据C1的定义,相对于该站点遇到的RMR值。基于经过验证的岩体质量参数,使用Phase2软件对不同的岩石盖进行了C1的数值分析。对于C1级,分别针对12m和25m min和Max的岩石盖进行了分析。可以观察到在所有情况下的变形都小,并且比隧道中允许的收敛小得多,隧道中的变形为隧道跨度的0.5%,即。89.05mm。 25m盖的岩石螺栓中的最大轴向力约为7%,对于12m的盖子,约为岩石螺栓容量的30%。 另外,在每种情况下,岩石螺栓都在塑料区域之外。 因此,所提供的岩石螺栓是安全的,适合这种情况。 提议的最终岩石支撑为25mm 4000mm长 @ 2500mm c/c岩石螺栓(交错)在隧道的北端和南端的50 mm PFR。89.05mm。25m盖的岩石螺栓中的最大轴向力约为7%,对于12m的盖子,约为岩石螺栓容量的30%。另外,在每种情况下,岩石螺栓都在塑料区域之外。因此,所提供的岩石螺栓是安全的,适合这种情况。提议的最终岩石支撑为25mm 4000mm长 @ 2500mm c/c岩石螺栓(交错)在隧道的北端和南端的50 mm PFR。
亲爱的市长萨利纳斯和海沃德市议会议员,代表海沃德清洁和绿色工作队以及美化小组委员会,我们正在写信,以支持和搬迁位于杰克逊街上的现有纪念碑网关的替换和搬迁。海沃德市以安全,不断增长的社区以及不断扩大商业和发展的多样性而自豪。海沃德市和海沃德城市清洁和绿色工作队的任务支持协同工作,以改善海沃德的形象为“海湾之心”。目前,位于杰克逊街(Jackson Street)和席尔瓦(Silva)大道(Silva Avenue)的城市西入口的现有城市门户标牌状况非常差,显示了过期的服务俱乐部和半个多世纪前创建的设计,这非常需要更换。这个老化的网关标志位于杰克逊三角社区的中间,注入了新的艺术和设计。虽然这座城市希望通过对整个杰克逊中位绿化的全面翻新来改善城市的形象和安全性,但该项目的边界从沃特金斯街(Watkins Street)西部开始,到达圣克拉拉街(Santa Clara Street)的西端。该项目定于2024年6月完成。随着已经开始进行的翻新和项目目标,现在是考虑增加一个新的城市网关标志,预算预算支出约为75,000美元。在图3中提到了从其他邻近的城市门户标志中提到的其他考虑因素进行市议会的考虑。杰克逊街(Jackson Street)大量使用了海沃德社区成员和湾区通勤者,因为这条街是880、580和圣马特奥桥的主要通道路线之一。该建议是为了支持从杰克逊街和席尔瓦大街的新门户标志拆除和终极搬迁到圣克拉拉街以东杰克逊街的交叉点。如图2所示,进入城市限制时,一个新的网关标志将为驾车者,行人和骑自行车的人在进入城市时为唯一,吸引人和战略性的寻路标志。该建议和建议替换和搬迁现有的城市门户标志旨在安装一个基于位置的新标志,该标志足够大,足以可见,可以快速移动的车辆交通,但足够小,可以安全地以安全的方式适合中间景观。KHCG TF建议设计应与Mission Boulevard南端的现有网关标志合并类似的美学特征,如图4所示。值得注意的是,新任务大道。网关标志作为238 CIP项目范围的一部分,它替换了原始网关
摘要:人类社会和研究人员随之而来的是,在经历了经济发展的时期以及由于这种发展的优势和劣势所致之后,以经济利益为基础的一维发展的延续会危害人类的生存和宁静。对环境和社会挑战的关注和损害导致了基于经济,环境和社会被称为可持续发展的三维发展概念的演变。由于可持续性每个维度的不同指标,找到有效的指标是很大的。供应链是最重要,最全面的领域之一,可持续性可以更好地整合层并改善总绩效。另一方面,目前的文献在代表全面和综合指南方面表现出严重的差距,以优化环境和社会指标在供应链管理中的影响。在本文中,收集了所有可能的可持续性指标,映射到供应链层中,并插入提出的数学模型。对于所有供应链的供应链的可持续性三个维度的有效指标是最大化整个供应链的可持续性。所提出的方法是在渔业供应链中实施的。
摘要。飞机推进的电气化可能会为二氧化碳(CO 2)中性空气旅行提供一种方式。在这里,已经飞行的电动飞机示威者主要依靠电池用作能源。虽然电池电概念可能是用于短距离应用的合适解决方案,例如城市空气车,但最先进的电池状态电池的能量密度不足以为具有典型范围为1000海里和70名乘客的区域飞机供电。推进概念适合区域飞机的一种可能的拓扑选项是由燃料电池系统(FCS)和电池组成的混合体。一方面,这个概念使用氢(H 2)作为主要能量载体,与仅电池飞机相比,所需的电池堆栈质量大大减少。是对具有高功率需求的飞行阶段的电池支撑,例如起飞或攀爬,可以较小的燃料电池系统和相应的热管理系统(TMS)的尺寸,因此与仅燃料电池飞机相比,额外的总体系统质量收益。目前的论文分析了电池堆栈支撑燃料电池系统的重量减小潜力,用于典型的区域飞机,涉及杂交系数(HF)和电池特定能量(BSE)。建模包括燃料电池系统和电池堆栈的尺寸,其他机械和电动组件,例如变速箱,电动机和电动电子设备以及相应的TMS。调整了依次的电气化飞机,保持机翼载荷和功率重量比率的恒定。HF和BSE的最佳组合产生的最低MTOM与27 100公斤的最低结合仍然比22 800千克的传统动力参考飞机重约19.9%。研究表明,与可用的最先进的解决方案相比,BSE的未来重量相似的未来飞机需要非常先进的电池技术。
超级电容器[18]、锌空气[19,20]和锂空气电池[21]以及锂离子、钠离子和钾离子存储负极。[22–24] 不同钴磷化物(Co x P:CoP+Co 2 P)[25]与氧化钴(Co x P/CoO)[26]的组合使这些材料多功能化并提高了其性能。另一方面,Co x P和Co 3 (PO 4 ) 2的联合作用对锂硫电池电化学性能和多硫化物转化机理的影响尚未研究。尽管钴磷化物具有广泛的潜在应用,但它们通常通过复杂的合成路线合成,包括在过量的磷源和还原剂中对钴或钴氧化物进行磷化。[22,24–26] 最近,Li等人。报道了使用化学计量的脱氧核糖核酸 (DNA) 作为 P 源,通过简便的静电纺丝和热处理成功合成了 Co 2 P/Co 2 N/C。[27] 另一方面,由于聚丙烯腈(碳源)溶液中无机组分的溶解度较差,限制了 Co 2 P 的含量。相反,使用水和乙醇可溶性的聚乙烯吡咯烷酮 (PVP) 作为碳源,可以合成无机组分含量高的碳复合材料。[28] 此外,还证实了 PVP 衍生的碳/SiO 2 复合纳米纤维垫可以作为多功能中间层,有效防止多硫化物的穿梭,并提高 S 基锂电池的电化学性能。[29,30]
