摘要:DNA-胶原蛋白复合物的不同方式主要用于基因递送研究。但是,很少有研究研究这些复合物作为生物活性支架的潜力。此外,尚无研究表征由自组装DNA宏结构和胶原蛋白的相互作用形成的DNA-胶原蛋白复合物。为了进行这项研究,我们在此报告了由序列特异性,自组装的DNA宏结构和胶原蛋白I的相互作用形成的新型生物活性支架的制造。DNA和胶原的变化导致高度相互交织的纤维骨架与不同的纤维厚度的高度相互交织的摩尔比。形成的支架是生物相容性的,并作为细胞生长和增殖的软基质表示。在DNA/胶原蛋白支架上培养的细胞促进了转铁蛋白的细胞摄取增强,并且进一步研究了DNA/胶原支架诱导神经元细胞分化的潜力。与对照组相比,DNA/胶原支架促进了具有广泛神经突的前体细胞的神经元分化。这些新型的,自组装的DNA/胶原支架可以作为开发各种生物活性支架的平台,并在神经科学,药物递送,组织工程和体外细胞培养中具有潜在的应用。
摘要:需要临床需要开发快速的过程支架来修复骨缺损。当前的研究介绍了利用基于熔点的3D打印的骨组织工程硅酸钙/聚二苯二甲酸钙的发展。硅酸钙(CZS)纳米颗粒被添加到多碳酸酯(PCL)多孔支架中,以增强其生物学和机械性能,同时对所得的性质进行了广泛的研究。在样品的熔点中没有发现显着差异,而包含生物陶瓷的样品的结晶温度点从36.1升至40.2°C。根据我们的结果,将CZS含量从0 wt。%(PC40)增加到多孔支架(孔隙率约为55-62%),将抗压强度从2.8 mpa提高到10.9 MPa。此外,SBF溶液中的磷灰石形成能力通过增强CZS百分比而显着增加。根据MTT测试结果,与纯PCL相比,PC40中MG63细胞的生存能力明显改善(约29%)。这些发现表明,3D打印的PCL/CZS复合支架可以成功制造,并显示出作为骨组织工程应用的植入物材料的巨大潜力。
值是 n (%) 或中位数(第一四分位数-第三四分位数)。ACS,急性冠状动脉综合征;ARC;学术研究联盟,CABG;冠状动脉搭桥手术,CCS;慢性冠状动脉综合征,HBR;高出血风险,H2 阻滞剂;组胺 2 型受体拮抗剂,eGFR;估计肾小球滤过率,MI;心肌梗死,NSTEMI;非 ST 段抬高型心肌梗死,PCI;经皮冠状动脉介入治疗,P-CAB;钾竞争性酸阻滞剂,PPI;质子泵抑制剂,STEMI;ST 段抬高型心肌梗死
1 德国慈善医院 (DHZC),心胸血管外科,Augustenburger Platz 1, 13353 Berlin, 德国; markus.kofler@dhzc-charite.de (MK); matteo.montagner@dhzc-charite.de (MM); simon.suendermann@dhzc-charite.de (SS); semih.buz@dhzc-charite.de (SB); christoph.starck@dhzc-charite.de (CS); volkmar.falk@dhzc-charite.de (VF); joerg.kempfert@dhzc-charite.de (JK) 2 Charit é —Universitätsmedizin Berlin,柏林自由大学和柏林洪堡大学的企业成员,Charit é platz 1, 10117 Berlin, 德国 3 阿尔伯塔大学心脏外科分部,埃德蒙顿,AB T6G 1H9,加拿大; mmoon@ualberta.ca 4 科隆大学心脏中心心胸外科,50923 德国科隆; maximilian.luehr@uk-koeln.de 5 DZHK(德国心血管研究中心),合作网站柏林,10785柏林,德国 6 转化心血管技术,转化医学研究所,健康科学与技术系,瑞士联邦理工学院(ETH),8092苏黎世,瑞士 * 通讯地址:leonard.pitts@dhzc-charite.de;电话:+49-30-4593-2059 † 这些作者对这项工作做出了同等贡献。
©2024作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
抽象基于支架的组织工程提供了一种有效的方法来修复子宫组织缺陷和恢复生育能力。在当前的研究中,通过4D打印,静电纺丝和3D生物打印的子宫再生设计和制造了与子宫组织相似的新型三层组织工程支架。高度可拉伸的聚(l-甲状腺素 - 三甲基碳酸盐)(plla-co -TMC,“ PTMC”简称)/热塑性聚氨酯(TPU)聚合物混合架架首先是通过4D打印制成的。为了改善生物相容性,在PTMC/TPU骨架上通过电启用产生了与聚多巴胺(PDA)颗粒掺入的多孔聚(PLGA)/明胶甲基丙烯酰基(GELMA)纤维。重要的是,将雌二醇(E2)封装在PDA颗粒中。因此产生的双层支架可以提供E2的受控和持续释放。随后,将基于3D生物启动的Bilayer Bioprine intrialsine rementers-uilare trirale trialer trialer trialeder trialder trialder infiral infiral inforials 与明胶甲基丙烯酰基(GELMA)墨水(BMSC)混合,并使用配方式的生物介入来形成含细胞的水凝胶层,该水凝胶层通过Bilayer caffolds上的3D生物涂片上的Bilayer caffolds上的3D生物涂片进行了形式。 这样形成的三层组织工程支架表现出形状的变形能力,当浸入37°C的培养基中时,从植物形状转变为管状结构。与明胶甲基丙烯酰基(GELMA)墨水(BMSC)混合,并使用配方式的生物介入来形成含细胞的水凝胶层,该水凝胶层通过Bilayer caffolds上的3D生物涂片上的Bilayer caffolds上的3D生物涂片进行了形式。这样形成的三层组织工程支架表现出形状的变形能力,当浸入37°C的培养基中时,从植物形状转变为管状结构。
第 2 页,共 23 页 �� ... �������������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������� ………………………………………………………………………………………………………………………………………………………… ���������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������� …………………………………………………………………………………………………………………………………………………… …………………………………………………………………………………………………………………………………………………… �������������������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������������ �������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ ��������������������������������������������������������������������������������������������������������������
在过去的25年中,已经在500多年的出版物中研究了波士顿科学金属支架,使医生对投资组合的治疗表现充满信心。波士顿科学继续通过研究对投资组合进行投资,以获得扩展的适应症,为患者提供更多的治疗选择。例如,WallFlex™Biliary RX完全覆盖的支架系统RMV现已指示用于治疗良性胆道狭窄的12个月内。使用WallFlex Biliary RX完全覆盖的支架系统RMV设备对良性胆道狭窄进行处理,与使用塑料支架进行治疗相比,患者的手术可能更少,可能会增强满意度和生活质量。2,3波士顿科学继续投资于Stent Technologies的未来突破性探索性工作。
二维分子组装体越来越受到人们的关注,而这种结构很难仅依靠自发分子组装来构建。本文我们展示了使用三足三蝶烯超分子支架实现的并苯发色团的二维组装体,这种支架已被证明具有强大的二维分子和聚合物基序组装能力。我们设计了夹在两个三足三蝶烯单元之间的并五苯和蒽衍生物。这些化合物组装成预期的二维结构,并五苯发色团既有足够的重叠以引起单线态裂变,又有足够的构象变化空间以促进三线态对解离成两个自由三线态,而蒽类似物则并非如此。详细的光谱分析表明,组装体中的并五苯发色团以高量子产率(ΦSF=88±5%)发生单线态裂变,产生三线态对,从中可得到自由三线态
摘要:基于miRNA的疗法代表了一种适用于各种医学领域的创新且有希望的策略,例如组织再生和许多疾病的治疗,包括癌症,心血管疾病和病毒感染。miRNA是一组小的非编码RNA,在调节转录后水平的基因表达中起着关键作用,并调节维持细胞和组织稳态的几种信号通路。《评论中讨论的临床试验先驱了一个新的miRNA治疗时代,尤其是在组织工程中,使用合成的外源模拟物miRNA和反义miRNA(抗MIRNA)来恢复组织健康。本综述概述了miRNA的生物发生,作用机理,调节和潜在应用,然后检查与治疗性miRNA的运输和交付相关的挑战。使用病毒和非病毒载体防止降解并确保有效的miRNA递送的可能性突出显示,重点是新兴使用3D生物材料脚手架的优势来递送模拟物miRNA和抗MIRNA,以促进组织修复和重新生产。最后,审查评估了miRNA激活的支架疗法的当前景观,这些疗法在骨,软骨和皮肤组织中的临床前和临床研究上,强调了它们作为个性化医学中有前途的前沿的出现。
