我于 1923 年 1 月 25 日出生在瑞典乌帕拉。我生长在一个中产阶级的学者家庭。我 3 岁时,父亲被任命为隆德大学的历史学教授,我便带着家人从乌普萨拉搬到了那里。我父亲在乌普萨拉大学获得了博士学位,我母亲通过了文学硕士考试。我母亲一生都对研究保持着浓厚的兴趣,但她把抚养孩子和协助丈夫进行研究放在首位。然而,当我父亲 76 岁去世时,71 岁的她将自己全部投入到她最喜欢的研究领域——中世纪瑞典妇女的法律地位。她用瑞典语出版了几本书和一些关于这个主题的文章,几年后,她获得了乌普萨拉大学的荣誉博士学位。我们家里有四个孩子,我们都获得了不同级别的学位。我们对人文学科有着强烈的倾向。我的哥哥和姐姐选择了人文学科,而我和比我小 7 岁的弟弟选择了医学。我之所以行为偏离正轨,部分原因是年轻人的反对,部分原因是我模糊地认为科学比艺术更“有用”。我的童年和青年时代过得很快乐。我在一个稳定的环境中长大,父母爱我、支持我。我的叛逆和冒险行为可能很普通。学校生活还算可以忍受;我没费太大劲就取得了很好的成绩。1939 年 6 月,16 岁的我和一个同龄的男孩搭便车去德国旅行了 2 周。这是我 32 岁之前唯一一次出北欧旅行。这发生在第二次世界大战爆发前两个半月。我们有机会与许多社会地位各异的德国人交谈;他们中的大多数人都确信,收割一结束战争就会爆发,他们似乎也接受了这个事实,尽管他们有些不情愿。在柏林,我曾在一家由福音基金会经营的旅馆住了一晚,那里住着非常贫穷的人。我特别记得几个留着长胡子、面带悲伤的犹太人,他们一边嘟囔着,一边读着一本可能是《塔木德》的厚书,似乎是在绝望的情况下寻找答案和解决办法。否则,我根本不知道我身边可能正在发生的针对犹太人的可怕行动。
模块化标准化武器和瞄准架 .................................................. 00 夜视设备-下一代系统 .............................................................. 00 Prophet 增强信号处理 .............................................................................. 00 在现代战场上保护装甲旅战斗队 ............................................................................................. 00 快速部署的短程防空系统 ............................................................................. 00 弹性波形和与联盟伙伴的互操作性 ............................................................. 00 系留无人机系统能力 ............................................................................. 00 第三代前视红外瞄准器 ............................................................................. 00 通过团队感知套件实现可信军事通信 ............................................................. 00 海军飞机采购 ............................................................................................. 00 特别感兴趣的项目 ............................................................................................. 00 海军航空母舰后勤支援 ............................................................................. 00 超级大黄蜂电力要求 ............................................................................. 00 V–22 投资报告 ............................................................................................. 00 V–22 发动机短舱改进 ............................................................................. 00 海军武器采购 ................................................................................................ 00 特别感兴趣的项目 .............................................................................................. 00 先进机载传感器 .............................................................................................. 00 远程火力 .............................................................................................................. 00 被动远程瞄准 .............................................................................................. 00 声纳浮标库存 ...................................................................................................... 00 海军造船和改装 ............................................................................................. 00 特别感兴趣的项目 ............................................................................................. 00 持续决议和政府关门对国防部造船工作的影响 ............................................................................. 00 大型水面战斗舰 ............................................................................................. 00 PAC-3 宙斯盾集成 ............................................................................................. 00 支持福特级航空母舰的稳定采购计划 .............................................................................................00 海军其他采购 ................................................................................................ 00 特别感兴趣的项目 .............................................................................................. 00 未来 X 波段雷达 .............................................................................................. 00 综合监视系统——联合跨域交换(JCDX) ...................................................................................... 00 空军飞机采购 ................................................................................................ 00 特别感兴趣的项目 ................................................................................................ 00 空军 A–10 撤资时间表 ............................................................................. 00 空军 MH–139 灰狼采购 ............................................................................. 00 B–52 机载电子攻击 ............................................................................. 00 阿拉斯加空中主权警报任务评估 ............................................................................. 00 航空软件修补时间表 ............................................................................. 00 美国印度-太平洋司令部轰炸机舰队作战 ...................................... 00 CV-22 鱼鹰部队结构评估 .............................................. 00 用于协同战斗机的高效中型推进系统 00 F-15EX 保形油箱 ........................................................ 00 F-15EX 多年采购战略实施 ........................................................ 00 F-35 第五代武器开发和部署 ........................................................ 00 采用商业人工智能工具加强飞行管理和空中作战的实施计划。 00 KC–135 先进自动化路线图 .............................................................. 00 利用先进飞机自动化进行货物运送 .............................................. 00 MH–139 正式训练单位 .............................................................................. 00 机动飞机连通性 ............................................................................................ 00 极地战术空运要求 ............................................................................................ 00 关于 MQ–9 收割者情报、监视和侦察需求和能力的报告 ............................................................................. 00 空军导弹采购 ............................................................................................. 00 特别感兴趣的项目 ............................................................................................. 00 快速适应型经济型巡航导弹 .............................................................................00 其他采购,空军................................................................................................ 00 特别感兴趣的项目.............................................................................................. 00
每年,与医疗保健相关的感染(HAIS)[1]每年都会复杂化,这会增加发病率和死亡率,延长医院住院,并膨胀医疗费用[2-5]。新生儿重症监护病房(NICUS)的新生儿是一个脆弱的人口,由于其出生体重低,早产和对众多侵入性程序的暴露,风险增加了[6-8]。在过去的几十年中,Hais成为全球的重大负担,这加剧了多药耐药病原体的惊人增加。在响应中,在医院环境中实施强大的感染预防和控制措施已成为必要。医疗设施中微型ISM的一个突出来源是水槽排水管,由于存在具有水源性机会病原体的生物膜(OPS)[9-14],因此可以充当储层。细菌病原体的大量非疾病爆发已与位于病房中的水槽排水管联系起来[3、6、12、15-21]。当个人洗手或将液体倒入水槽中时,溅起是常见的情况,尤其是在排水管附近[3,22 - 25]。这一事件导致近距离材料和表面的潜在污染,以及附近患者和医疗保健人员的皮肤或衣服。此外,这些飞溅可以产生周围空气中含有潜在有害污染物的气溶胶[12,26,27],构成患者造成吸毒的风险。清洁和消毒是减少排水细菌负荷并消除疫情中涉及的操作的基本策略。消毒的有效性取决于几个因素,包括消毒剂的类型,其浓度,暴露时间,应用频率以及与生物膜相关细菌对消毒剂的耐受性。生物膜为细菌提供了保护环境[28,29],使暴露时间和动作模式对于确保有效渗透消毒剂至关重要。使用泡沫代替液体产品或使用保留P-trap中消毒剂的专用设备会导致更长的暴露时间,从而减少排水液的细菌负荷[30 - 34]。在减少排水量的细菌载荷(例如氯[35],蒸汽[16],乙酸[36,37],臭氧水[34]和过氧化氢[38-40]时,已经对各种消毒剂进行了有限的测试。但是,如果进行了单一治疗,几天后,OPS通常会在排水管中收割[16、33、38、41]。因此,建立经常性清洁和消毒常规对于防止在爆发后的水槽排水管中的OP复活至关重要。更昂贵但显然更有效的替代方法是安装自distin的排水装置,以产生高温,振动和/或发射紫外线射线以防止生物膜形成[18,27,42]。
精准农业与灌溉 – 美国当前观点 Steven R. Evett,美国农业部农业研究局自然资源与可持续农业系统代理副局长,steve.evett@ars.usda.gov Susan A. O’Shaughnessy,美国农业部农业研究局农业研究工程师,P.O.抽屉 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Susan.O’Shaughnessy@ars.usda.gov Manuel A. Andrade,美国农业部农业研究局赞助的橡树岭科学与教育研究所农业研究工程师,P.O.抽屉 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Alejandro.Andrade@ars.usda.gov 摘要。精准农业 (PA) 作为农业经营的概念框架,满足了管理农场、流域、区域和国际范围内田间和田间变异的需求。自 20 世纪 80 年代美国现代 PA 诞生以来,PA 的使用方式、所涉及的目标以及支持它的技术发生了巨大变化。全球定位系统 (GPS) 可供公众使用。结合最初为卫星图像开发的地理信息系统 (GIS) 计算机技术,PA 成为农民规划特定地点农业经营的主流工具,早期包括施肥,其次是播种率、种子品种、农药喷洒,现在是特定地点灌溉。配备 GPS 转向和位置感知监督控制系统的设备允许将预先确定的场地特定处方图下载到设备中,并用于关闭喷洒系统,例如,当喷洒系统经过水道时。支持 GPS 的收割设备生成的产量图是用于场地特定管理的第一批数据之一,由于缺乏共变现场数据和基于土壤时空特性如何影响植物发育的充分决策支持系统 (DSS),结果往往令人困惑。然而,这种被动和间接的 PA 已经发展到提供更强大的解决方案,例如,根据地理参考土壤采样提供可变速率施肥,从而生成肥料需求处方图。或者另一个例子,基于多卫星传感器融合的 30 米分辨率作物用水图进行空间可变灌溉管理。许多较为成功的 PA 技术都涉及机载传感器系统,该系统将数据提供给嵌入式计算平台,从而对设备进行实时调整。此类主动和直接 PA 系统使用现代技术,例如,在有杂草时打开喷洒设备,否则关闭,或者在非生物胁迫传感器指示作物缺水时打开可变速率灌溉喷嘴。此类监控和数据采集 (SCADA) 系统依赖于基于对生物物理学和生物系统的复杂理解的算法。如今,计算能力、数据采集和管理基础设施、新建模范式和空间决策支持系统的融合为 PA 带来了新的可能性。PA 服务的提供者现在包括从国家到地方各级的政府机构、私人提供者(通常使用来自政府地面、空中和卫星传感系统的公开数据)、大学推广系统和农民合作社。数据来源范围从公共领域到农民或第三方持有的私人数据。有关数据标准、数据共享、数据所有权以及公共和私人权利的问题进一步增加了现代 PA 的复杂性,但公共和私人机构都在积极解决这些问题。
精准农业与灌溉 — — 美国当前观点 Steven R. Evett,美国农业部农业研究局自然资源与可持续农业系统代理副局长,steve.evett@ars.usda.gov Susan A. O'Shaughnessy,美国农业部农业研究局农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Susan.O'Shaughnessy@ars.usda.gov Manuel A. Andrade,美国农业部农业研究局赞助的橡树岭科学与教育研究所农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Alejandro.Andrade@ars.usda.gov 摘要精准农业 (PA) 作为农业经营的概念框架,满足了管理农场、流域、区域和国际田间和田间差异的需求。自 20 世纪 80 年代美国全球定位系统 (GPS) 向公众开放以来,PA 的使用方式、所涉及的目标以及支持它的技术发生了巨大变化。结合最初为卫星图像开发的地理信息系统 (GIS) 计算机技术,PA 成为农民规划特定地点农业作业的主流工具,早期包括施肥,随后是播种率、种子品种、农药喷洒,现在是特定地点灌溉。配备 GPS 转向和位置感知监控系统的设备允许将预先确定的特定地点处方图下载到设备中,并用于例如在喷洒系统经过水道时关闭喷洒系统。支持 GPS 的收割设备生成的产量图是用于特定地点管理的第一批数据之一,由于缺乏共变田间数据和基于土壤时空特性如何影响植物发育的充分决策支持系统 (DSS),结果往往令人困惑。然而,这种被动和间接的 PA 已经发展到可以提供更强大的解决方案,例如,根据地理参考土壤采样提供可变速率的肥料施用,从而生成肥料需求处方图。或者再举一个例子,基于多卫星传感器融合的 30 米分辨率作物用水地图进行空间可变灌溉管理。许多更成功的 PA 技术涉及机载传感器系统,该系统将数据提供给嵌入式计算平台,从而对设备进行实时调整。这种主动和直接的 PA 系统使用现代技术,例如,在有杂草时打开喷洒设备,否则关闭,或者在非生物胁迫传感器指示作物缺水时打开可变速率灌溉喷嘴。此类监控和数据采集 (SCADA) 系统依赖于基于对生物物理学和生物系统的复杂理解的算法。如今,计算能力、数据采集和管理基础设施、新建模范式和空间决策支持系统的融合为 PA 带来了新的可能性。PA 服务的提供者现在包括从国家到地方各级的政府机构、私人提供者(通常使用来自政府地面、空中和卫星传感系统的公开数据)、大学推广系统和农民合作社。数据来源范围从公共领域到农民或第三方持有的私人数据。有关数据标准、数据共享、数据所有权以及公共和私人权利的问题进一步增加了现代 PA 的复杂性,但公共和私人机构都在积极解决这些问题。
精准农业与灌溉 — — 美国当前观点 Steven R. Evett,美国农业部农业研究局自然资源与可持续农业系统代理副局长,steve.evett@ars.usda.gov Susan A. O'Shaughnessy,美国农业部农业研究局农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Susan.O'Shaughnessy@ars.usda.gov Manuel A. Andrade,美国农业部农业研究局赞助的橡树岭科学与教育研究所农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Alejandro.Andrade@ars.usda.gov 摘要精准农业 (PA) 作为农业经营的概念框架,满足了管理农场、流域、区域和国际田间和田间差异的需求。自 20 世纪 80 年代美国全球定位系统 (GPS) 向公众开放以来,PA 的使用方式、所涉及的目标以及支持它的技术发生了巨大变化。结合最初为卫星图像开发的地理信息系统 (GIS) 计算机技术,PA 成为农民规划特定地点农业作业的主流工具,早期包括施肥,随后是播种率、种子品种、农药喷洒,现在是特定地点灌溉。配备 GPS 转向和位置感知监控系统的设备允许将预先确定的特定地点处方图下载到设备中,并用于例如在喷洒系统经过水道时关闭喷洒系统。支持 GPS 的收割设备生成的产量图是用于特定地点管理的第一批数据之一,由于缺乏共变田间数据和基于土壤时空特性如何影响植物发育的充分决策支持系统 (DSS),结果往往令人困惑。然而,这种被动和间接的 PA 已经发展到可以提供更强大的解决方案,例如,根据地理参考土壤采样提供可变速率的肥料施用,从而生成肥料需求处方图。或者再举一个例子,基于多卫星传感器融合的 30 米分辨率作物用水地图进行空间可变灌溉管理。许多更成功的 PA 技术涉及机载传感器系统,该系统将数据提供给嵌入式计算平台,从而对设备进行实时调整。这种主动和直接的 PA 系统使用现代技术,例如,在有杂草时打开喷洒设备,否则关闭,或者在非生物胁迫传感器指示作物缺水时打开可变速率灌溉喷嘴。此类监控和数据采集 (SCADA) 系统依赖于基于对生物物理学和生物系统的复杂理解的算法。如今,计算能力、数据采集和管理基础设施、新建模范式和空间决策支持系统的融合为 PA 带来了新的可能性。PA 服务的提供者现在包括从国家到地方各级的政府机构、私人提供者(通常使用来自政府地面、空中和卫星传感系统的公开数据)、大学推广系统和农民合作社。数据来源范围从公共领域到农民或第三方持有的私人数据。有关数据标准、数据共享、数据所有权以及公共和私人权利的问题进一步增加了现代 PA 的复杂性,但公共和私人机构都在积极解决这些问题。
精准农业与灌溉 – 美国当前观点 Steven R. Evett,美国农业部农业研究局自然资源与可持续农业系统代理副局长,steve.evett@ars.usda.gov Susan A. O’Shaughnessy,美国农业部农业研究局农业研究工程师,P.O.抽屉 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Susan.O’Shaughnessy@ars.usda.gov Manuel A. Andrade,美国农业部农业研究局赞助的橡树岭科学与教育研究所农业研究工程师,P.O.抽屉 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Alejandro.Andrade@ars.usda.gov 摘要。精准农业 (PA) 作为农业经营的概念框架,满足了管理农场、流域、区域和国际范围内田间和田间变异的需求。自 20 世纪 80 年代美国现代 PA 诞生以来,PA 的使用方式、所涉及的目标以及支持它的技术发生了巨大变化。全球定位系统 (GPS) 可供公众使用。结合最初为卫星图像开发的地理信息系统 (GIS) 计算机技术,PA 成为农民规划特定地点农业经营的主流工具,早期包括施肥,其次是播种率、种子品种、农药喷洒,现在是特定地点灌溉。配备 GPS 转向和位置感知监督控制系统的设备允许将预先确定的场地特定处方图下载到设备中,并用于关闭喷洒系统,例如,当喷洒系统经过水道时。支持 GPS 的收割设备生成的产量图是用于场地特定管理的第一批数据之一,由于缺乏共变现场数据和基于土壤时空特性如何影响植物发育的充分决策支持系统 (DSS),结果往往令人困惑。然而,这种被动和间接的 PA 已经发展到提供更强大的解决方案,例如,根据地理参考土壤采样提供可变速率施肥,从而生成肥料需求处方图。或者另一个例子,基于多卫星传感器融合的 30 米分辨率作物用水图进行空间可变灌溉管理。许多较为成功的 PA 技术都涉及机载传感器系统,该系统将数据提供给嵌入式计算平台,从而对设备进行实时调整。此类主动和直接 PA 系统使用现代技术,例如,在有杂草时打开喷洒设备,否则关闭,或者在非生物胁迫传感器指示作物缺水时打开可变速率灌溉喷嘴。此类监控和数据采集 (SCADA) 系统依赖于基于对生物物理学和生物系统的复杂理解的算法。如今,计算能力、数据采集和管理基础设施、新建模范式和空间决策支持系统的融合为 PA 带来了新的可能性。PA 服务的提供者现在包括从国家到地方各级的政府机构、私人提供者(通常使用来自政府地面、空中和卫星传感系统的公开数据)、大学推广系统和农民合作社。数据来源范围从公共领域到农民或第三方持有的私人数据。有关数据标准、数据共享、数据所有权以及公共和私人权利的问题进一步增加了现代 PA 的复杂性,但公共和私人机构都在积极解决这些问题。
精准农业与灌溉 — — 美国当前观点 Steven R. Evett,美国农业部农业研究局自然资源与可持续农业系统代理副局长,steve.evett@ars.usda.gov Susan A. O'Shaughnessy,美国农业部农业研究局农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Susan.O'Shaughnessy@ars.usda.gov Manuel A. Andrade,美国农业部农业研究局赞助的橡树岭科学与教育研究所农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Alejandro.Andrade@ars.usda.gov 摘要精准农业 (PA) 作为农业经营的概念框架,满足了管理农场、流域、区域和国际田间和田间差异的需求。自 20 世纪 80 年代美国全球定位系统 (GPS) 向公众开放以来,PA 的使用方式、所涉及的目标以及支持它的技术发生了巨大变化。结合最初为卫星图像开发的地理信息系统 (GIS) 计算机技术,PA 成为农民规划特定地点农业作业的主流工具,早期包括施肥,随后是播种率、种子品种、农药喷洒,现在是特定地点灌溉。配备 GPS 转向和位置感知监控系统的设备允许将预先确定的特定地点处方图下载到设备中,并用于例如在喷洒系统经过水道时关闭喷洒系统。支持 GPS 的收割设备生成的产量图是用于特定地点管理的第一批数据之一,由于缺乏共变田间数据和基于土壤时空特性如何影响植物发育的充分决策支持系统 (DSS),结果往往令人困惑。然而,这种被动和间接的 PA 已经发展到可以提供更强大的解决方案,例如,根据地理参考土壤采样提供可变速率的肥料施用,从而生成肥料需求处方图。或者再举一个例子,基于多卫星传感器融合的 30 米分辨率作物用水地图进行空间可变灌溉管理。许多更成功的 PA 技术涉及机载传感器系统,该系统将数据提供给嵌入式计算平台,从而对设备进行实时调整。这种主动和直接的 PA 系统使用现代技术,例如,在有杂草时打开喷洒设备,否则关闭,或者在非生物胁迫传感器指示作物缺水时打开可变速率灌溉喷嘴。此类监控和数据采集 (SCADA) 系统依赖于基于对生物物理学和生物系统的复杂理解的算法。如今,计算能力、数据采集和管理基础设施、新建模范式和空间决策支持系统的融合为 PA 带来了新的可能性。PA 服务的提供者现在包括从国家到地方各级的政府机构、私人提供者(通常使用来自政府地面、空中和卫星传感系统的公开数据)、大学推广系统和农民合作社。数据来源范围从公共领域到农民或第三方持有的私人数据。有关数据标准、数据共享、数据所有权以及公共和私人权利的问题进一步增加了现代 PA 的复杂性,但公共和私人机构都在积极解决这些问题。
Vivekanand P Patil 和 Mahendran 摘要 卡纳塔克邦以玉米生产和工业葡萄糖提取而闻名。这两个地区在北部和南部地区相互联系,很容易获得有关完整供应链的完整信息。共选取 280 个样本进行调查,其中包括 120 名玉米农民、60 名佣金代理商、60 名贸易商、20 名加工单位和 20 名买家。玉米的供应链从农民开始,然后连接到佣金代理商,接着是贸易商、加工单位和买家。佣金代理商在连接玉米农民和贸易商销售产品方面发挥着非常重要的积极作用。根据上述渠道计算出的价差表明,玉米的价差为 927.15 卢比/季和 739.54 卢比/季。北卡纳塔克邦和南卡纳塔克邦供应链的技术效率和规模效率 北卡纳塔克邦和南卡纳塔克邦玉米供应链的平均技术效率分别为 81.00% 到 97.20% 和 92.70% 到 85.70%。南卡纳塔克邦玉米供应链的技术效率更高,因为南卡纳塔克邦的电子招标市场表现良好,同时提高了对质量、供应可靠性和价格稳定性的控制。这种模式的另一个优点是,它为农民和佣金代理商提供了灵活性和更好的理解,以实现增值,例如干燥和更好的包装,减少浪费,加工单位的灵活性更高,从而改善了供应链实践。 关键词:印度芥末,路径系数分析 介绍 供应链管理 衡量供应链成功的真正标准是整个供应链中的活动协调得如何好,从而为消费者创造价值,同时提高供应链中每个环节的盈利能力。供应链管理 (SCM) 是“对向消费者提供所需产品的整个生产、分销和营销流程的管理”。供应链管理是为最终用户或最终消费者创造价值的综合过程。它是一种将产品或服务生命周期中的所有活动(从最早的原材料来源到最终消费者再到处置)整合在一起的理念。绘制供应链是供应链管理的第一步,包括绘制供应链中的参与者(承担特定目标的人)以及原材料从玉米农民到买家的流动情况。玉米供应链玉米供应链中的主要利益相关者如下:乡村聚合商/贸易商:他们在玉米供应链中发挥着重要作用,因为他们在生产点即村庄开展业务。在某些情况下,一些农民自己也充当乡村聚合商,他们从小农户手中收购玉米,然后通过佣金代理或直接卖给大贸易商,具体取决于该地区可交易玉米的数量。由于村级集运商距离玉米农户较近,因此在玉米销售旺季,他们经常充当佣金代理的代理人。因此,他们往往是佣金代理和玉米种植户之间最可靠的纽带。他们以现金方式从分散的小农和边际农户家门口收购玉米。他们还根据佣金代理提供的价格信息告知农民。在某些情况下,比如在泰米尔纳德邦,贸易商还在农田里提供收割和脱粒服务,并直接在田间购买谷物。