低频噪声测量仪器 (LFNM) 是用于表征各种设备的工具 [1]。它应用于许多技术,例如半导体 [2, 3]、微电子材料 [4–10]、电化学设备 [11]、光电探测器 [12–18] 以及其他材料 [19–21]。在本研究中,一些特殊放大器 (超低噪声放大器 - ULNA) 被广泛使用。它们的性能还用于检测技术 [22, 23](作为传感器信号调节中的前置放大器)或其他低噪声仪器的特性分析 [24–27]。然而,这种放大器的设计需要对其组件进行噪声分析并选择无源和有源元件的配置。首先,应该在双极结型晶体管 (BJT) 和场效应晶体管 (FET) 技术之间进行选择。 BJT 的特点是电压噪声较低,电流噪声较高,这是由高基极电流引起的 [26]。在这种情况下,BJT 输入电流噪声随着基极电流的增加而增加,基极电流是将晶体管的工作点设置在有源区并获得高增益所必需的(电流增益系数也取决于基极电流)。使用这种技术,可以获得较低的放大器输入阻抗。然而,这些放大器需要在交流电中使用不稳定的电解电容器
摘要:记录具有小型单层积分放大器的神经信号在研究以及商业应用中都具有很高的兴趣,在商业应用中,通常可以并行获取100个或更多通道。本文回顾了基于CMOS技术(包括侧向双极器件)的低噪声生物医学扩增器设计的最新发展。根据其噪声效率因子(NEF),输入引用的绝对噪声,电流消耗和面积,对七个主要电路拓扑类别进行了识别和分析。观察到较低的NEF的历史趋势,而绝对噪声功率和电流消耗在超过五个数量级以上表现出广泛的趋势。通过晶体管级的模拟和从180 nm和350 nm CMOS技术制造的五个不同的原型设计进行测量,检查了侧向双极晶体管作为放大输入设备的性能。最低测量的噪声曲线为9.9 NV/√Hz,偏置电流为10 µ,导致NEF为1.2。
光学放大设备是光学通信系统中的关键组件。在1980年代,Erbium掺杂的纤维放大器(EDFAS)是一项开创性的成就,可以实现长途光学通信和革命性的信息传输[1,2],因为EDFA一直为全球基于纤维的通信网络提供了低噪声的高收益,数十年来。erbium离子在覆盖高输出功率的电信带中表现出稳定和低噪声增益,使Erbium掺杂介质非常适合光学放大器和激光器。但是,EDFA通常需要一米至数十米的光纤长度,这使它们容易体现环境波动,并为整合工作带来挑战。半导体光放大器(SOA)具有高增益和集成,但它们具有极化敏感[3],噪声图也相对较高。对比,与不同光子平台的稀土离子掺杂显示了可以有效解决问题的综合掺杂波导放大器(EDWAS)的巨大希望[4,5]。根据1990年代开始对EDWA进行的研究[6]。如今,Edwas引起了重大的兴趣,受益于不同集成光子平台的传播损失,包括氮化硅(SI 3 N 4)[1、7-9] [1、7-9],氧化泰当不是(TEO 2)[10]和Niobate(Niobate(ln)[4、11-18)[4、11-18] [4、11-18] [4、11-18]>尤其是,由于其透明度较大,非线性和出色的电极(EO)特性,LN长期以来一直是光子学的有希望的材料。绝缘子(LNOI)平台上的Niobate锂结合了LN的优势与增强的模式限制,使其成为下一代光子集成电路
电感器是一种具有频率相关阻抗特性的电气元件;电感器在低频时表现出低阻抗,在高频时表现出高阻抗。虽然“理想”运算放大器输出阻抗特性为零,但“实际”放大器的输出阻抗是电感性的,并且像电感器一样随着频率的增加而增加。EL5157 的输出阻抗如图 2 所示。使用运算放大器的应用中的一个常见挑战是驱动电容负载。之所以有挑战性,是因为运算放大器的电感输出与电容负载一起形成 LC 谐振槽拓扑,其中电容负载电抗与电感驱动阻抗一起导致当反馈围绕环路闭合时产生额外的相位滞后。降低相位裕度会导致放大器振荡的可能性。振荡时,放大器会变得非常热,并且可能会自毁。针对这一挑战,有几个非常著名的解决方案。1) 最简单的解决方案是在输出端串联一个电阻,以强制反馈来自放大器的直接输出,同时隔离无功负载。这种方法的代价是牺牲负载上少量的输出电压摆幅。2) 另一个直接的解决方案是应用“缓冲网络”。缓冲网络是一个与电容负载并联的电阻和电容,在负载上提供电阻阻抗以减少输出相移;提供额外的稳定性。
研究描述:到2050年,当二氧化碳排放量应达到零以限制气候变化时,城市将占全球人口的68%。因此,城市是需要通过适应和缓解措施来保护人类免受气候变化的关键地方。科学文献记录了技术,政治,基础设施或基于自然的气候解决方案。然而,关于气候变化的科学文献的快速增长散布在许多科学学科,例如城市地理,社会科学和工程学,这使得难以获得在哪些条件下以及为什么在哪些条件下起作用的结构化概述。
摘要 本文介绍了一种负载调制平衡放大器 (LMBA) 的设计方法,重点是减轻 AMPM 失真。通过引入二次谐波控制作为设计自由度,可以选择复杂的负载轨迹来补偿设备中的 AMPM 非线性,而不会显著影响效率。数学推导伴随着基于闭式方程的设计程序,以仅基于负载牵引数据来制造 LMBA。通过对三种不同设计进行测量比较来验证该理论,这些设计在伪 RF 输入 Doherty 类 LMBA 配置中以 2.4 GHz 运行,具有 J 类、-B 类和 -J* 类主 PA。J 类原型的性能优于其他设计,在峰值输出功率和 6 dB 回退时分别具有 54% 和 49% 的漏极效率,并且在此功率范围内只有 4 度的 AM-PM。当使用 10 MHz、8.6 dB PAPR LTE 信号驱动时,无需数字预失真,即可实现 40.5% 的平均效率和优于 − 40.5 dBc 的 ACLR。
摘要 — 使用有限元频域代码 ANSYS HFSS 和粒子单元 (PIC) 代码 MAGIC 设计和模拟了循环平面正交场放大器 (RPCFA)。RPCFA 是一种高功率微波装置,改编自美国密歇根州安娜堡密歇根大学开发的循环平面磁控管。平面、曲折线和慢波结构的电磁 (EM) PIC 模拟显示,1.3 MW、3 GHz 信号可放大 13.5 dB 至约 29 MW。RPCFA 设计为由密歇根电子长束加速器-陶瓷绝缘体的脉冲功率驱动,该加速器目前配置为输出 −300 kV、1-10 kA 的脉冲,脉冲长度为 0.3-1 µ s。 RF 输入驱动信号将由 MG5193 磁控管提供,该磁控管可在 3 GHz 频率下提供高达 2.6 MW 的 5 µ s 脉冲。EM PIC 模拟还展示了设计的零驱动稳定性,并用于评估由于几个实验参数的变化而导致的性能变化。驱动频率的变化表明 RPCFA 的 3 dB 放大带宽预计为 300 MHz 或 10%。
摘要 在 DRAM 和 SRAM 等深亚微米存储器中,准确感测位线电压变得非常具有挑战性,因为制造工艺的固有变化导致晶体管特性失配,这带来了严重的挑战,导致电路故障和产量下降。本文解决了这些问题,并将补偿方案应用于各种感测放大器的原理图,从而对工艺引起的变化具有很高的容忍度。使用 DGFinFET 设计的原理图利用增强的自补偿技术来克服物理晶体管特性的差异。使用蒙特卡罗技术重建晶体管失配(阈值电压,V t ),表明即使在 40-50mV 的严重 V t 失配下,所提出的 CCLSA 原理图也能正确运行。将这些结果与文献中报道的相应电路进行了速度、面积和产量的比较。与未补偿的设计相比,该设计还提供了高达 20-30% 的产量,并且降低了电路和性能的复杂性。这些电路在 45nm 和 32nm 技术节点上很容易实现。关键词:补偿、工艺变化、DRAM、FinFET 感测放大器、稳健性
因保修索赔而退回的电子管通常会被送往最初购买的 Varian 授权经销商或 OEM。如果直接退回 Varian 制造工厂,则应通知最初购买的 Varian 授权经销商或 OEM,以防有特殊指示。所有因保修索赔而退回的产品必须通过预付运费运送,并附上一份填写完整的服务报告表副本,每件运送的产品都附有一份该表格的副本。没有此表格,保修索赔就无法处理。原始发票、销售单或其他购买文件的副本应包含在已执行的服务报告表中,以确定购买日期和价格。任何保修索赔退货都应始终使用 Varian 原始运输纸箱和包装材料。由于包装不当而导致的运输损坏通常会阻止任何保修调整,因为损坏通常会使任何测试或测量都无法进行。