Jacques Rouanet、Mercedes Quintana、Philippe Auzeloux、Florent Cachin、Françoise Degoul。用于黑色素瘤成像和治疗的苯甲酰胺衍生物放射性示踪剂:临床前/临床开发以及与其他治疗方法的结合。《Alimentary Pharmacology & Therapeutics》(增刊),2021 年,第 107829 页。�10.1016/j.pharmthera.2021.107829�。�hal-03160223�
汗腺癌(SGC)是皮肤(MATS)的恶性附件肿瘤的一种罕见类型。它具有局部浸润,区域淋巴结受累和远处转移的潜力。局部淋巴结清扫术的局部切除量是治疗的支柱,并且没有共识指南用于辅助治疗。我们介绍了一位绅士的病例报告,左腰部区域患有SGC,并带有腋窝淋巴结转移,并呈现出长长的皮肤结节,最近在其上散发出生长和溃疡。他接受了病变的局部切除和左腋窝解剖的治疗。术后组织病理学和免疫组织化学证实了SGC的诊断。由于存在高风险特征,他接受了原发性和淋巴结位点的辅助放疗。由于临床变异,非特异性免疫组织化学特征和组织病理学意外,SGC的诊断非常具有挑战性。由于缺乏相关文献,辅助放疗的作用仍未确定,但是鉴于SGC的侵略性行为,放疗显着改善了局部和区域控制,尤其是在存在高风险的病理特征的情况下。需要在SGC辅助治疗领域进行进一步的研究,以最佳改善疾病的结果。
癌症是全球首要死亡原因,2020 年死亡人数接近 1000 万人 (1) 。在尼泊尔,2020 年新发病例、死亡和患病人数(5 年)分别为 20508 人、13629 人和 36909 人。肺癌(12.2%)、宫颈癌(10.9%)和乳腺癌(9.6%)是三种最常见的癌症部位 (2) 。几乎所有患有这些癌症的患者在治疗期间的某个阶段都需要放射治疗。由于尼泊尔的癌症登记系统不够完善,世卫组织提供的数据可能不准确。2018 年,国家卫生研究委员会启动了基于人口的癌症登记处 (PBCR),覆盖了尼泊尔约 20% 的总人口。根据 Poudel 等人的研究,从 2003 年到 2013 年,男性和女性的癌症发病率均有所增加 (3) 。发病率的增加将给本已负担过重的辐射设施带来额外压力,使情况更加恶化。
摘要:靶向放射性核素疗法作为一种核医学的亚科越来越突出。数十年来,用放射性核素的治疗主要仅限于在甲状腺疾病中使用碘-131。当前,正在开发由放射性核素组成的放射性药物,该放射性核素与载体结合了与所需的具有高特异性生物学靶的载体。目标是在肿瘤水平上尽可能选择性,同时限制在健康组织水平上接受的剂量。近年来,对癌症的分子机制以及创新靶向剂(抗体,肽和小分子)的外观以及新的放射性病的可用性,在矢量化的内部辐射方面具有相当大的进步,并具有更大的进步,并具有更好的治疗性治疗性的治疗性和延伸性的散发性和散发性的散发性,并具有个性化的安全性,并具有个性化的安全性,并具有个性化的安全性,并具有更高的性能。例如,针对肿瘤微环境而不是癌细胞,现在似乎特别有吸引力。几种用于治疗靶向的放射性药物已显示出几种类型的肿瘤的临床价值,并已或将很快被批准并授权用于临床使用。在他们的临床和商业成功之后,该领域的研究尤其不断增长,临床管道似乎是一个有希望的目标。本综述旨在概述有关靶向放射性核素治疗的当前研究。
然而,EBRT 对治疗转移性或隐匿性场外疾病无效 [3],[4]。在过去的几十年里,放射性配体疗法 (RLT) 已成为抗击癌症的一种有前途的工具 [5]。RLT 与传统 EBRT 有显著不同:放射性标记化合物通过肠外或口服给药,定位到肿瘤组织,在那里以 α、β 或俄歇电子 (AE) 粒子的形式发射电离辐射 [6]。这会导致 DNA 损伤、肿瘤细胞死亡和肿瘤消退。123I 发射短程俄歇电子,将其能量沉积在纳米距离内,从而产生高线性能量转移 (LET) [7]。因此,放射性药物定位到其最有效靶点附近至关重要,即肿瘤细胞核内的 DNA。这也避免了对周围健康细胞的潜在交叉影响 [8]。为了实现将发射俄歇电子的放射性核素选择性地递送至肿瘤以治疗癌症,需要将放射性核素附着到靶向配体上 [9]。由于 PARP-1 的核定位,选择性 PARP 抑制剂似乎是俄歇电子发射放射性核素载体的极佳候选者 [10]。
通过部署荧光脱氧葡萄糖 - 质子发射断层扫描/计算机断层扫描(FDG-PET/CT)成像来区分炎症性和肿瘤病变,对于准确的诊断和患者管理肿瘤学是必要的。这些实体之间的代谢活动造成了挑战,这可能会使解释和阻碍诊断确定性变得复杂。本评论全面探讨了成像参数,例如最大和峰标准化吸收值(Suvmax和Suvpeak),突出了它们在临床实践中的优势和局限性。它进一步详细阐述了整合高级成像方式的添加价值,例如正电子发射断层扫描/磁共振成像(PET/MRI),提供了出色的软组织对比度,功能性见解和在复杂病例中增强的诊断准确性。此外,从这些新兴技术如何优化病变表征并降低观察者的变异性的方面讨论了人工智能(AI)和放射线学的作用。此外,通过整合定量分析,解剖成像特征和相关的临床数据,提出了一种临床算法,用于病变分化,以提供实际指导。该实用指导使临床医生拥有必要的工具,以在其实践中运用知识。
IAEA核能系列包括出版物,旨在进一步使用核技术来支持可持续发展,推进核科学和技术,促进创新并建立能力,以支持现有和扩展的核电和核科学应用程序。出版物包括涵盖涉及和平使用核技术的活动的所有政策,技术和管理方面的信息。虽然IAEA核能系列出版物中提供的指南并不构成成员国的共识,但它已经进行了内部同行审查,并在发布前向会员国提供了评论。
介入放射学在过去几十年中已大大增长,并成为治疗或诊断的重要工具。这项技术主要是有益的,而且掌握了,但可能会发生意外暴露,并导致确定性效应的出现。缺乏对用于这些实践的低能X射线的放射生物学后果的知识,这使得对不同组织的预后非常不确定。为了改善患者的辐射保护并更好地预测并发症的风险,我们实施了一种新的临床前小鼠模型来模仿介入放射学中的放射学燃烧,并对剂量沉积进行了完整的表征。设计了一种新的设置和准直仪,可在80 kV的空气中照射15只小鼠的后腿。辐照后,收集小鼠胫骨以通过电子顺磁共振(EPR)光谱测量来评估骨剂量。在简化和体素化的幻像中进行了带有Geant4的Monte Carlo模拟,以表征不同组织中的剂量沉积,并评估次级电子(能量,路径,动量)的特征。收集了30只小鼠胫骨进行EPR分析。在骨最初在30 Gy的骨中测量了平均剂量为194.0±27.0 Gy。确定空气转化因子为6.5±0.9。样本间和间小鼠的变异性估计为13.9%。蒙特卡洛模拟显示了这些低X射线能量的剂量沉积的异质性和密集组织中的剂量增强。研究了二级电子的特定性,并显示了组织密度对能量和路径的影响。获得了实验和计算出的骨与空气转化因子之间的良好一致性。实施了一种新的临床前模型,允许在介入放射学条件下进行放射学燃烧。对于开发新的临床前放射生物学模型,其中沉积在不同组织中的剂量的确切知识至关重要,蒙特卡洛模拟的互补性和对剂量表征的实验测量结果已被证明是相当大的资产。
研究罗切斯特梅奥诊所的奥利弗·萨托(Oliver Sartor)进行了一项随机的双盲研究,该研究对412例患者进行了研究(III期研究Splash,17)。患者患有转移性cast割癌,并接受177LU-PNT2002的治疗(每八周静脉内静脉注射6.8 GBQ,四个周期)。终点是无X射学进展的生存。对照组接收了标准ARPI。正如Sartor在巴塞罗那2024年的ESMO大会(欧洲医学肿瘤学会)宣布的那样,根据所有方面的所有方面,放射性核素疗法在所有方面都显着优越。 来自墨尔本彼得·麦卡勒姆癌症中心的阿伦·阿扎德(Arun Azad)报告了类似的结果[18]。 他使用了177LU-PSMA-617,终点是48周后接近零的PSA值。 在这里,放射性核素疗法也被证明显然是优越的。 随后,可以继续进行cast割治疗而没有任何问题。正如Sartor在巴塞罗那2024年的ESMO大会(欧洲医学肿瘤学会)宣布的那样,根据所有方面的所有方面,放射性核素疗法在所有方面都显着优越。来自墨尔本彼得·麦卡勒姆癌症中心的阿伦·阿扎德(Arun Azad)报告了类似的结果[18]。他使用了177LU-PSMA-617,终点是48周后接近零的PSA值。在这里,放射性核素疗法也被证明显然是优越的。随后,可以继续进行cast割治疗而没有任何问题。