ASM 手册 ................................................................ 1–5 材料参考 ......................................................................6 一般工程参考 ......................................................................7 故障分析 ...................................................................... 7–8 金相学与特性 ........................................................8–9 疲劳与断裂 ...................................................................... 10 制造与设计 ...................................................................... 11 钢材 ............................................................................. 1 2 –1 3 有色金属 .............................................................13–15 焊接、钎焊和软焊 ...................................................... 16 热处理 ............................................................................. 17–18 涂层与表面工程 ............................................................. 18 腐蚀 ............................................................................. 19 塑料、复合材料与陶瓷 ............................................................. 20 微电子学 ............................................................................. 20–21 非冶金学家的冶金学™ ............................................................. 21 合金相图 ............................................................................. 22 期刊 ............................................................................. 23 数字数据库 ............................................................................. 24–25教育与培训................................................................ 26–27
提供了故障分析和预防的理论框架。文献提出了基于三种思想流派的工作系统故障分析模型 - (a)人为原因(b)系统为原因(c)系统与人之间的相互作用为原因。在本研究中,系统地评估了这些范式下的各种模型,例如人机模型(1980 年)、交互和耦合模型(1984 年)、瑞士奶酪模型(1990 年)、多米诺骨牌理论模型(1998 年)、熵模型(2003 年)、人为错误可靠性评估模型(1990 年)、描述性人机模型(2003 年)和随机聚类模型(2017 年)。这些开创性的模型研究了工作系统的一个或多个基本组成部分以及它们之间的相互作用:人、机器、工作空间、工作环境和工作组织。随着工作系统的技术和复杂性不断增长,任何单一的方法都不足以评估工作系统故障。本研究的评估表明,Leamon 的人机模型(1980)是最合适和最基本的工作系统模型,它对工作系统的所有组成部分及其间相互作用进行了全面的解释。为了加强这一信念,本文用 Leomon 的人机工作系统模型解释了狮航 610 空难(2018 年)的故障分析。鉴于高度复杂和自动化的工作系统,Leamon 模型中存在一些缺陷,需要对工作系统模型进行一些未来的研究。
空气动力学、结构、材料、推进、电子和系统。NAL 在 20 世纪 70 年代最杰出的工程成就是开发了用于测试飞机疲劳寿命的全尺寸疲劳试验设施,这对延长各种飞机的寿命做出了重大贡献。到 20 世纪 70 年代中期,NAL 已成为印度航空领域的主要参与者之一。它被公认为管理最完善的国家实验室,承担了 100 多个航空航天领域的高科技研发项目。NAL 在此期间活动的一个非常引人注目的特点是数字“”·设备开发能力范围令人惊叹,例如数据记录和负载测量系统、温度控制器等。一个非常成功的故障分析和事故调查小组逐渐发展起来。这项活动旨在满足印度航空航天组织的需求。许多涉及飞机、直升机和用于国防飞机的地面设备的事件/事故的调查被 IAF(印度空军)、HAL(印度斯坦航空有限公司)、MoCA(民航部)等提交给实验室进行调查。截至目前,该小组已调查了 1,500 多起民用和军用飞机事故/事件。NAL 将探索在故障分析中引入人工智能 (AI) 和数据分析,以快速获得结果。纤维增强塑料 (FRP) 试验工厂的建立是为了建造大型机鼻雷达罩来容纳敏感的电子设备。
信息来自广泛的文献搜索、现场故障分析实验室调查、由政府和行业公认专家组成的文件审查委员会以及可靠性专家的技术投入,几乎不可能将所有技术变化和独特应用纳入其中。诚然,由于资源限制,一些技术部分并不被认为是包罗万象的,整个文档中呈现的细节水平可以提高。RADC 征求用户意见、更正和技术投入(美国政府禁止对贡献者进行货币补偿),以便将来对文档进行修订和更新。
摘要。这项工作调查了NIST美国最近对Ascon Cipher进行的持续故障分析,用于轻巧的加密应用。在持续的故障中,在整个加密阶段,系统中都存在曾经通过Rowhammer注入技术注入的故障。在这项工作中,我们提出了一个模型,以安装Ascon Cipher上的持续故障分析(PFA)。在Ascon Cipher的最终回合中,我们确定置换回合中注入故障的S-box操作P 12很容易泄漏有关秘密密钥的信息。该模型可以存在于两个变体中,其中一个平行S-box调用中的单个输出s-box的实例,同一错误的S-box迭代64次。攻击模型表明,具有经过身份验证的加密使用相关数据(AEAD)模式运行的任何spongent构造都容易受到持续故障的影响。在这项工作中,我们演示了单个故障的场景,其中一旦注射后,在设备关闭电源之前,该故障持续了。使用采用的方法,我们成功地检索了Ascon中的128位键。我们的实验表明,所需查询的最小数字和最大数量分别为63个明文和451个明文。此外,我们观察到,安装攻击所需的查询数量取决于S-box LUT中的故障位置,如报告的图所示,该图报告了最小查询数量和100个键值的平均查询数量。
学生学习成果(即毕业生将能够……): • 进行工程评估并审查所有 EEEE 部件的可靠性相关性能。 • 考虑进度和成本约束,通过选择适合项目生命周期的部件来支持项目,最大限度地提高可靠性。 • 监督部件采购并与部件制造商合作,确保符合工程要求。 • 为 EEEE 部件制定测试计划,包括筛选和资格测试活动以及任何所需的故障分析,并评估测试结果以确定其适合太空飞行用途。 • 评估新 EEEE 技术和供应商在太空飞行方面的能力。
本手册按照四大类故障进行组织:断裂、腐蚀、磨损以及本文的主题——变形。金属被广泛用作工程材料的原因之一是它们不仅强度高,而且通常能够通过变形来响应载荷(应力)。事实上,冶金工程的很大一部分都与强度和延展性的平衡有关。因此,在分析其他类型的故障时经常会观察到变形,而考虑变形可能是分析的一个重要部分。变形过程中会吸收能量,在某些情况下,吸收的能量也可能是一个重要因素。此外,应该注意的是,并非所有的变形都必然构成“故障”。本文首先考虑真正的变形故障,即变形不应该发生并且变形与功能故障有关的情况。然后,介绍故障分析中对变形的更一般考虑。在这里,变形是指部件形状发生变化但没有材料损失的情况。变形是指导致变形的过程。当结构或部件变形,无法再支撑预期承载的负载、无法执行预期功能或干扰其他部件的操作时,就会发生变形失效。变形失效可以是塑性失效或弹性失效,可能会伴有或不伴有断裂。变形主要有两种类型:尺寸变形(指体积变化(增大或收缩))和形状变形(弯曲或翘曲),指几何形状的变化。本文中的大多数示例涉及金属,但这些概念也适用于非金属。金属、聚合物和木材等各种材料都容易变形,尽管不同类别的材料的变形机制可能略有不同。变形失效通常被认为是不言而喻的,例如,碰撞中车身损坏或钉入硬木时发生弯曲。然而,失效分析师经常面临更微妙的情况。例如,汽车发动机气门杆变形(弯曲)的直接原因是气门头与活塞接触,但故障分析人员必须超越这一直接原因,才能推荐适当的纠正措施。气门可能因润滑不良而卡在打开状态;气门弹簧可能因腐蚀而损坏。弹簧可能强度不足并变形,导致气门掉入活塞的路径中,或者发动机可能多次超过每分钟转速限制,导致线圈碰撞和随后的弹簧疲劳断裂。如果不仔细考虑所有证据,故障分析人员可能会忽略变形故障的真正原因。本文讨论了变形故障的几个常见方面,并提供了变形故障的合适示例以供说明。
故障注入攻击 (FIA) 是一类主动物理攻击,主要用于恶意目的,例如提取加密密钥、提升权限、攻击神经网络实现。有许多技术可用于引起集成电路故障,其中许多来自故障分析领域。在本文中,我们探讨了 FIA 的实用性。我们分析了文献中最常用的技术,例如电压/时钟故障、电磁脉冲、激光和 Rowhammer 攻击。总而言之,FIA 可以通过使用通常低于数千美元的注入设备安装在 ARM、Intel、AMD 最常用的架构上。因此,我们认为这些攻击在许多情况下都可以被视为实用的,尤其是当攻击者可以物理访问目标设备时。