关于 FDP:5G/6G 通信和信号处理应用的人工智能 (AI) FDP 重点介绍人工智能在 5G/6G 通信和信号处理领域的影响。AI 技术广泛应用于许多应用,例如基于 5G/6G 的无线通信、信号处理、生物医学图像处理、计算机视觉、自然语言处理等。本课程将介绍 AI 的基础知识和研究领域,以及其在 5G/6G 通信和信号处理中的应用。它将有助于提升印度各工程院校教职员工的专业知识和能力。专家涵盖了一系列当代计算主题,并提供强大的理论基础,并培养批判性分析和实践技能。该 FDP 旨在传授知识并培训 AI 工程方面的基础知识以及对最近使用 5G/6G 进行通信和使用 AI 的信号处理应用的见解。主要课程内容: 图像处理、计算机视觉、信号分类、统计信号处理、信号处理技术和基于 5G/6G 的无线通信技术和应用的简介。 机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。 深度学习方法简介,以及基于 DL 的其他架构及其应用。 用于信号处理、计算机视觉、语音处理和 5G/6G 通信系统的 CNN 架构。 电路设计中的 AI、天线系统设计中的 ML/DL、软件定义无线电、认知无线电中信号处理的机器学习。 MIMO 系统、系统设计中的去耦电路、双工系统、mWave 通信。 ISAC、无人机通信、5G/6G 通信技术、量子通信。 农业无人机、医疗保健人工智能、脑机接口、情绪识别。 用于生物医学成像和信号处理、EEG/ECG 信号处理和非侵入性医疗应用的 AI/ML。 Tensor Flow/Keras/PyTorch/Jupyter 和 Colab 的基础知识。 使用 Python/MATLAB 进行数据预处理和数据可视化。 案例研究,使用 Python/MATLAB 进行动手实践。 负责本课程的教师:本课程将由 NIT Warangal 的教师负责;来自 IIT/NIT/IIIT 相关领域的学者受邀在本课程中授课。来自行业的演讲者也有望作为课程的一部分进行演讲。
关于 FDP:这个关于医学成像和信号处理应用的人工智能 (AI) 教师发展计划 (FDP) 将帮助教育工作者和研究人员了解 AI 基础知识以及它如何应用于具有多种安全应用的医学成像和信号处理技术。参与者将探索机器学习和深度学习概念,重点是将 AI 用于医学成像和信号处理技术,这有助于诊断、医疗保健、农业、零售和监控系统。AI 在图像/信号处理中起着关键作用,它基于面部识别、虹膜识别、指纹分析和语音识别实现准确而有效的身份验证方法。通过实践活动和现实世界的例子,与会者将获得在教学和研究中有效使用不同算法的 AI 的实用技能。到课程结束时,参与者将准备好将 AI 工具集成到他们的工作中,提高他们使用现代技术进行教学和解决安全挑战的能力。这将通过提高参与者在这些关键领域的专业知识和教学能力而使他们受益。主要课程内容: 图像处理、计算机视觉、生物医学信号处理、生物医学信号分类、信号处理技术和医学图像分析应用简介。 机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。 深度学习方法简介,以及基于 DL 的其他架构及其应用。 用于生物医学信号处理、计算机视觉、语音处理和医学成像实现的 CNN 架构。 用于医疗保健、脑机接口、医学诊断、生物识别、情绪识别、活动识别的人工智能。 用于生物医学成像、基于 CT 扫描/MRI 的图像分析、眼底和医学图像分类的 AI/ML。 用于信号处理应用的 AI/ML、EEG/ECG 信号处理、ECG、EEG 和 PPG 信号分析、异常检测。 用于医学信号/图像数据分类的 AI/ML,各种医学图像分析和应用。 Tensor Flow/Keras/PyTorch/Jupyter 和 Colab 的基础知识。 使用 Python/MATLAB 进行数据预处理和数据可视化。 案例研究,使用 Python/MATLAB 的动手实践课程。主持本课程的教师:本课程将由 NIT Warangal 的教师主持;来自 IIT/NIT/IIIT 相关领域的学者将受邀在本课程中授课。预计行业演讲者也将作为课程的一部分授课。注册费详情:教师和研究学者 750 卢比/- 行业参与者 2250 卢比/-
人工智能 (AI) 是指计算机或机器执行通常需要人类智能才能完成的任务的能力,例如学习、解决问题、决策等。构建 AI 系统有几种不同的方法,包括机器学习(系统在数据集上进行训练,可以随着时间的推移提高其性能)和基于规则的系统(系统遵循一组预定的规则来做出决策)。
单元1向学生介绍数据和统计词汇。学生还将学习在现实世界中谈论数据。数据的可变性似乎暗示了有关数据分布的某些结论,但并非所有变化都是有意义的。统计数据使我们能够发展出对不确定性和变化的共同理解。在本单元中,学生将定义并表示分类和定量变量,描述和比较单变量数据的分布,并解释统计计算以评估有关单个数据点或样本的主张。学生还将开始应用正常分布模型,以介绍如何使用人群的理论模型来描述样本数据的某些分布。后来的单元将更充分地开发概率建模和推理。
资源人员专家教师将来自国际机构、知名学术机构、印度理工学院马德拉斯分校、印度理工学院孟买分校、印度政治经济学学院维扎格分校、印度理工学院瓦朗加尔分校和印度理工学院卡纳塔克分校以及来自霍尼韦尔、西门子和横河电机的行业/公司专业人士。 参与资格 FDP 更具优势,因此向 AICTE 认可机构的教师、研究生和博士研究人员、行业/研发组织/顾问人员、主办机构的参与者开放。 课程费用 没有注册费,但必须进行注册确认。 出勤率至少为 80%、考试成绩合格率为 70% 并提交了对参加 FDP 的反馈的参与者颁发证书。有关更多详细信息,请参阅此链接 https://atalacademy.aicte- india.org/FAQs 席位数量:最低 100 人 申请方式:参与者必须通过 AICTE ATAL 注册链接申请 https://atalacademy.aicte-india.org/signup 选择标准:按照 AICTE ATAL 指南和先到先得的原则。 联系方式 TK Radhakrishnan 博士,教授(HAG),化学工程系。手机号码:9488451677 K. Sankar 博士,助理教授,化学工程系手机号码:7427960065 电子邮件:radha@nitt.edu,地址:化学工程系,Tanjore-Trichy 高速公路,Thuvakudi,国家理工学院 Tiruchirappalli – 620015,泰米尔纳德邦,印度
摘要 本研究调查了 445 名中小学和高等教育教师,以了解他们在课堂上使用人工智能工具的情况。结果显示,虽然教师普遍对教育中的人工智能持积极态度,但只有 25% 的教师真正将基于人工智能的工具融入教学中。此外,最常用的工具是 ChatGPT、Dall-E 和 Midjourney。最后,中小学教师主要将人工智能用于内容创作目的,例如演示文稿、文本或视频,而不强调学生对人工智能工具的参与。相比之下,高等教育教师将人工智能用于学术技术目的,解释人工智能的功能、获取信息并让学生尝试使用人工智能工具,以及与研究相关的任务,如文本翻译或数据分析。基于这些结果,教育工作者的人工智能培训计划应针对每个阶段量身定制,除了常用的 ChatGPT 等人工智能工具外,还应纳入更广泛的人工智能工具。
●教师/学校秘书应通过AESOP/FRANTLINE系统要求获得认证的代替教师。www.aesoponline.com●登录前线www.aesoponline.com,并按照下面的说明在eesop/Frontline中输入缺席。●输入您缺席的日期。●进入缺席时,如果需要替代,请选择“是,需要替代”●输入缺席的原因:“疾病,PB,PN等”。●由于将实际上/远程学习进行指导,因此RUSD老师必须将课程计划上传到代替教师的eesop/Frontline门户网站●这是您将课程计划上传到代替教师的eesop/Frontline Portal的方式:●准备在Aesop/Frontline中创建课程,请按照pdf附件来节省课程。●单击“选择文件”(请参阅下图)选择当天的PDF课程计划,然后上传文件。●凭证技术员,Jewel Bundy将确保已分配的替代品已经在Google教室接受过培训。
关于 FDP:5G/6G 通信和信号处理应用的人工智能 (AI) FDP 重点介绍人工智能在 5G/6G 通信和信号处理领域的影响。AI 技术广泛应用于许多应用,例如基于 5G/6G 的无线通信、信号处理、生物医学图像处理、计算机视觉、自然语言处理等。本课程将介绍 AI 的基础知识和研究领域,以及其在 5G/6G 通信和信号处理中的应用。它将有助于提升印度各工程院校教职员工的专业知识和能力。专家涵盖了一系列当代计算主题,并提供强大的理论基础,并培养批判性分析和实践技能。该 FDP 旨在传授知识并培训 AI 工程方面的基础知识以及对最近使用 5G/6G 进行通信和使用 AI 的信号处理应用的见解。主要课程内容: 图像处理、计算机视觉、信号分类、统计信号处理、信号处理技术和基于 5G/6G 的无线通信技术和应用的简介。 机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。 深度学习方法简介,以及基于 DL 的其他架构及其应用。 用于信号处理、计算机视觉、语音处理和 5G/6G 通信系统的 CNN 架构。 电路设计中的 AI、天线系统设计中的 ML/DL、软件定义无线电、认知无线电中信号处理的机器学习。 MIMO 系统、系统设计中的去耦电路、双工系统、mWave 通信。 ISAC、无人机通信、5G/6G 通信技术、量子通信。 农业无人机、医疗保健人工智能、脑机接口、情绪识别。 用于生物医学成像和信号处理、EEG/ECG 信号处理和非侵入性医疗应用的 AI/ML。 Tensor Flow/Keras/PyTorch/Jupyter 和 Colab 的基础知识。 使用 Python/MATLAB 进行数据预处理和数据可视化。 案例研究,使用 Python/MATLAB 进行动手实践。 负责本课程的教师:本课程将由 NIT Warangal 的教师负责;来自 IIT/NIT/IIIT 相关领域的学者受邀在本课程中授课。来自行业的演讲者也有望作为课程的一部分进行演讲。
• 泌尿学 • 组织工程 • 转化癌症研究 • 心血管生理学和高血压 • 再生医学 • 癌症治疗内分泌学 • 神经和行为药理学 • 器官系统 • 生物力学和生物医学成像 • 遗传学和基因调控
