更好。场镜和聚光镜中央区域的表面质量应为 20-5,外区的表面质量应为 40-15。目镜的中心透镜中央区域的表面质量应为 40-15,外区的表面质量应为 40-20。除对称目镜中的目镜外,目镜中央区域的表面质量应为 40-20,外区的表面质量应为 60-30。当场镜和目镜相同时,两者的表面质量应为中央区域 20-5,外区 40-15。位于目镜和出瞳之间的滤光片中央区域的表面质量应为 40-20,外区的表面质量应为 60-30。位于内部的滤光片应具有与 3.7.10.1 中对棱镜相同的要求。位于物镜前方的滤光片的表面质量应为 80-50 或更好。
摘要:尽管经过了数十年的深入研究,但阿尔茨海默病 (AD) 的疾病改良治疗方法仍然非常需要。除了广泛分析的 tau 和淀粉样蛋白病理级联之外,还有两种有希望的研究途径最终可能确定 AD 的新药物靶点,这些研究途径基于对这种疾病的恢复力和易感性机制的更好理解。我们认为,大脑中的胰岛素样生长因子 I (IGF-I) 活性为 AD 的恢复力和易感性机制提供了共同的基础。我们推测,保留的大脑 IGF-I 活性有助于恢复 AD 病理,因为这种生长因子干预了被认为与 AD 有关的所有主要病理级联,包括代谢障碍、蛋白质稳态改变和炎症,这三种被认为是最重要的。相反,许多 AD 风险因素(如年老、2 型糖尿病、饮食不均衡、久坐不动的生活、社交、中风、压力和教育程度低)都存在 IGF-I 活性紊乱,而载脂蛋白 (Apo) E4 基因型和创伤性脑损伤也可能受到脑 IGF-I 活性的影响。因此,在分析这些过程时应考虑 IGF-I 活性,而保持 IGF-I 活性将有助于预防 AD 病理进展。因此,我们需要在所有这些条件下确定 IGF-I 活性并开发一种保持它的方法。然而,确定脑 IGF-I 活性不能仅仅基于这种神经营养因子的体液或组织水平,需要开发新的基于功能的评估方法。
越来越多的证据表明,表观遗传学在调节所有类型主动脉瘤的发病机制中也起着关键作用。众所周知,表观遗传因素会调节基因表达。这种机制似乎很有趣,尤其是了解遗传易感性和遗传因素与主动脉瘤和散发性动脉瘤复杂病理生理学的关系;事实上,后者是遗传因素和可改变的生活方式因素(即营养、吸烟、感染、吸毒、饮酒、久坐的生活方式等)密切相互作用的结果。表观遗传因素包括 DNA 甲基化、翻译后组蛋白修饰和非编码 RNA。在这里,我们的注意力集中在 miRNA 在综合征型和散发型胸主动脉瘤中的作用。它们既可以作为生物标志物,也可以作为新治疗策略的靶点。
建立了量子相对熵以及冯·诺依曼熵的方向二阶和高阶导数的积分表示,并用于给出基本已知数据处理不等式的简单证明:量子通信信道传输的信息量的 Holevo 界限,以及更一般地,在迹保持正线性映射下量子相对熵的单调性——映射的完全正性不必假设。后一个结果首先由 Müller-Hermes 和 Reeb 基于 Beigi 的工作证明。对于这种单调性的简单应用,我们考虑在量子测量下不增加的任何“散度”,例如冯·诺依曼熵的凹度或各种已知的量子散度。使用了 Hiai、Ohya 和 Tsukada 的优雅论证来表明,具有规定迹距的量子态对上这种“散度”的下界与二元经典态对上相应的下界相同。还讨论了新的积分公式在信息论的一般概率模型中的应用,以及经典 Rényi 散度的相关积分公式。
更好。视场透镜和聚光透镜在中心区域的表面质量应为 20-5,在外区的表面质量应为 40-15。目镜的中心透镜在中心区域的表面质量应为 40-15,在外区的表面质量应为 40-20。除对称目镜中的目镜外,目镜在中心区域的表面质量应为 40-20,在外区的表面质量应为 60-30。当视场透镜和目镜相同时,两者的表面质量在中心区域应为 20-5,在外区的表面质量应为 40-15。位于目镜和出瞳之间的滤光片在中心区域的表面质量应为 40-20,在外区的表面质量应为 60-30。位于内部的滤光片应具有与 3.7.10.1 中对棱镜规定的相同要求。位于物镜前方的滤光片的表面质量应为 80-50 或更高。
我们考虑香农相对熵的扩展,称为 f -散度。三个经典的相关计算问题通常与这些散度有关:(a) 根据矩进行估计,(b) 计算正则化积分,和 (c) 概率模型中的变分推断。这些问题通过凸对偶相互关联,并且对于所有这些问题,在整个数据科学中都有许多应用,我们的目标是计算上可处理的近似算法,这些算法可以保留原始问题的属性,例如潜在凸性或单调性。为了实现这一点,我们推导出一系列凸松弛,用于从与给定特征向量相关的非中心协方差矩阵计算这些散度:从通常不易处理的最佳下限开始,我们考虑基于“平方和”的额外松弛,现在它可以作为半定程序在多项式时间内计算。我们还基于来自量子信息理论的谱信息散度提供了计算效率更高的松弛。对于上述所有任务,除了提出新的松弛之外,我们还推导出易于处理的凸优化算法,并给出了多元三角多项式和布尔超立方体上的函数的说明。
(a) 估计发生 CBRN 威胁的区域的技术 我们将构建一个系统原型,该系统可以根据事件发生时当地的天气条件和数据,使用逆模拟方法来计算源的估计区域CBRN 检测设备的分散状态导致 CBRN 威胁产生
摘要:提出了一种由晶体振荡器和自由运行介质谐振器振荡器 (DRO) 驱动的锁相环 (PLL) 级联。为了最大限度地降低相位噪声、杂散音和抖动,使用较低 GHz 范围内的可编程 PLL1 来驱动具有固定倍频因子的毫米波 (mmW) PLL2。相位噪声分析得出两个 PLL 的两个最佳带宽,以使级联的输出抖动最低。通过分频 PLL1 的输出频率并通过由 DRO 驱动的单边带 (SSB) 混频器对其进行上变频,可以进一步降低 PLL1 中的相位噪声和杂散音 (杂散)。通过将 SSB 混频器纳入 PLL1 的反馈环路中,可以避免手动调整 DRO,并且可以采用低噪声自由运行 DRO。本文介绍了 SiGe BiCMOS 技术中的一种示例设计。
椎间盘炎 (SD) 通常是一个或多个椎体(骨髓炎、脊椎炎)、椎间盘(椎间盘炎)和椎旁软组织的感染性炎症。1 从病因上讲,SD 可由细菌化脓性引起,由结核病或真菌肉芽肿性引起,或由寄生虫(例如包虫)引起。1 最常见的传染性病原体是金黄色葡萄球菌(90% 的病例)和链球菌。2 在大多数情况下,病原体通过血源性播散到达椎体前部。2 较少见的是,播散是通过持续性播散(例如从椎旁脓肿)或通过手术、腰椎穿刺或创伤直接接种而发生的。 2 导致 SD 发生的危险因素包括高龄、糖尿病、败血症、静脉注射药物滥用、静脉注射管污染、尿路感染、免疫缺陷、既往脊柱手术或创伤。3 SD 的患病率估计为每年 5 – 6/100,000。2