摘要。本文记录了从扰动的参数集合(PPE)技术的方法和限制性的结果,其中多个参数是同时发生的,并且参数值是通过拉丁超管采样确定的。这是通过社区At-Mosphere模型6(CAM6)进行的,这是社区地球系统模型2版(CESM2)的大气组合。我们将PPE方法应用于CESM2-CAM6,以了解对大气物理学参数的气候敏感性。最初的模拟在Mi-Crophysics,对流,湍流和气溶胶方案中有45个参数,具有263个集合成员。这些大气参数通常是许多气候模型中最不确定的。控制模拟和有针对性的模拟,以了解由于气溶胶和快速气候反馈而引起的Climente强迫。在多维空间映射输入参数中探索了各种模拟器的使用来输出指标。参数对各种模型输出的影响,例如辐射,云和气溶胶特性。ma-Chine学习也用于针对观察探测最佳参数值。我们的发现表明,PPE是用于气候不确定性分析的有价值工具。此外,通过同时改变许多参数,我们发现,参数值的许多不同组合可以产生与观察结果一致的恢复,从而仔细的分析
修订日期 变更描述 2021 年 6 月 为了与 2021 年 2 月发布的 IWG 中期估计保持一致,对二氧化碳、甲烷和一氧化二氮的估计值进行了修订,以反映美国经济分析局 (BEA) NIPA 表 1.1.9 中年度 GDP 隐含价格平减指数值的使用。 2021 年 6 月 为了与 IWG 方法保持一致,甲烷和一氧化二氮的值已四舍五入为两个有效数字,并使用 PAGE 模型重新计算了估计值,以排除少数模型运行,在这些模型运行中,边际运行触发了气候不连续性,但基线运行没有触发,从而导致虚假的高值。 2021 年 10 月 更正执行摘要中的错字,将一氧化二氮价值的中心值从每吨 142,000 美元更改为每吨 42,000 美元。 2022 年 5 月 添加了氢氟碳化物 (HFC) 的值,更新了描述这些值的文本,并提供了示例。更新了有关全球与国内 SCC 的联邦政策描述。
摘要:在计算中包括海面电流,可以通过负风能输入来潮湿的中尺度涡流,并且具有涡流寿命的潜在影响。在这里,我们研究了斜力斜体反气旋涡流,但要采用理想化的高分辨率高分辨率数值模型,遭受绝对(无海面电流)和相对(包括海面电流)的风应力。这项研究的结果表明,相对风应力耗散表面平均动能(MKE),并且还通过Ekman泵送整个水柱产生额外的垂直运动。风应力卷曲 - 诱导的Ekman泵送产生额外的巴罗诊所转化(平均平均动能电位),发现通过增加深MKE来抵消表面MKE的阻尼。对相对风应力的缩放分析 - 诱导的斜压转化和相对风应力阻尼确定这些数值的结果,表明额外的能量转换抵消了相对风应力阻尼。更重要的是,发现风应力卷曲 - 诱导的Ekman泵送可以改变表面电势涡度梯度,从而导致涡流的早期不稳定。因此,涡流不稳定性和最终的涡流衰变的开始是在模拟中以相对风应力的较短时间尺度进行的。
运输事故和环境灾难对结婚时供应链的可靠性构成了挑战。由于国际贸易在没有明显的多样化的供应路线上加强了,因此由于热带气旋等极端事件引起的运输扰动风险可能会增加。在这项研究中,我们对台风引起的西太平洋交易途径的短期运输中断的区域和全球经济影响进行了建模。使用基于数值的电代理的冲击模型和近视局部优化,我们计算了超过180次超过180万个贸易和供应关系的区域经济领域的响应。我们计算的是,由于西太平洋台风在20 0 0–2020之间,运输可能会导致当地的过度供应和稀缺情况以及相关的区域价格变化。在我们的模型中,经济代理商通过重新安排和增加需求来应对这些价格信号和临时供应瓶颈。从我们的数值分析中得出,由于出口价格降低,我们发现了所有贸易集团的中位出口量增加,但区域差异很大。进一步表明,在本世纪的16年内,中国,东盟,东亚和欧洲出口到台风引起的扰动的弹性增加。我们追溯到这些贸易集团的相互连接性的兴起。
摘要:欧盟委员会 (EC) 自 2014 年以来一直通过数字经济和社会指数 (DESI) 监测成员国的数字化进程。DESI 指数目前对欧盟成员国进行排名,并根据四个核心指标和 33 个单独指标监测它们的进展。我们试图确定是否可以通过使用 DESI 的年度数据库来检测成员国之间的趋同。通过研究指数的变化,我们提出存在所谓的“马太效应”,即欧盟 27 个成员国之间的“富人越来越富”综合症。我们还假设 COVID-19 大流行会影响 DESI 的变化。研究的问题是使用文献计量、统计数学方法的问题。σ 收敛分析用于估计成员国之间差异随时间的减少,而 β 收敛分析用于估计赶上初始发展水平的速度。进行了 PCA 分析,以验证马修效应,并考虑实际人均 GDP 变化的附加 λ 方差。在 2016-2021 年期间,σ 收敛得到了证实。β 收敛得到了显著证实,研究还表明追赶的半衰期约为 20 年。2016-2021 年期间的马修效应虽然没有得到显著证实,但往往表明它的存在。COVID-19 大流行对 DESI 指数值的影响就像
A.概述B.与相关车辆的相关性C.头部组件测试的优势D.头部损伤标准(HIC)E。速度和角度会影响Hood VI的速度和角度。定义受标准A的相关区域A。确定引擎盖顶B.引擎盖区域C.定义儿童头部测试区域和成人头部测试区VII。提出的要求并评估合规性A。必须符合HIC 1000 B的引擎盖区域数量。HIC1700区域的制造商名称C.首先接触D.考虑与必须满足HIC100和HIC1700限制的测试面积有关的考虑。考虑到测试区域的扩展的考虑因素不到Hood面积VIII的数值的三分之二时,考虑到了测试区域的扩展。GTR 9术语和修正案3 A.术语B的比较B。修正案3 IX。头部特征A.一般B.资格限制C.可重复性和可重复性X.其他问题A.主动引擎盖xi。对其他标准XII的影响。提议的交货时间XIII。福利和成本XIV。考虑了替代方案xv。规则制定分析并通知XVI。公众参与
变分量子本征值求解器 (VQE) 是一种计算量子多体系统基态和激发态能量的算法。该算法的一个关键组成部分和一个活跃的研究领域是参数化试验波函数的构建——即所谓的变分拟定。波函数参数化应该具有足够的表现力,即对于某些参数值的选择,能够表示量子系统的真实本征态。另一方面,它应该是可训练的,即参数的数量不应该随着系统的大小呈指数增长。在这里,我们将 VQE 应用于寻找奇奇核 6 Li 的基态和激发态能量的问题。我们研究了在酉耦合团簇拟定中对费米子激发算子进行排序对 VQE 算法收敛的影响,方法是仅使用保留 J z 量子数的算子。在降阶的情况下,精度提高了两个数量级。我们首先使用具有任意测量精度的经典状态向量模拟器计算最佳假设参数值,然后使用这些值评估 IBM 超导量子芯片上 6 Li 的能量本征态。我们使用误差缓解技术对结果进行后处理,并能够重现精确的能量,对于 6 Li 的基态和第一激发态,误差分别为 3.8% 和 0.1%。
创新应与其他国家参数进行比较进行分析。根据 2018 年世界银行人力资本指数值的国家排名,乌克兰在 157 个国家中排名第 50 位。排名前三的分别是:新加坡、日本和韩国。根据联合国人类发展指数,乌克兰属于人类发展水平高的国家集团,2017 年在 189 个国家中排名第 88 位。排名前三的分别是:挪威、瑞士和澳大利亚。在世界经济论坛全球人力资本报告中,该报告计算全球人力资本指数 (GHCI) 并对该国的人力资本(当前和预期)进行全面评估,2017 年乌克兰在 130 个国家中排名第 24 位。排名前三的分别是:挪威、芬兰和瑞士。根据 GHCI 的各个子指数对乌克兰的排名,其分析表明,该国在教育定量指标方面排名较高(教育总体水平、不同教育水平儿童的覆盖率相当于第 5 位),但在质量指标方面已经明显较差(初等教育质量 — 第 47 位,教育系统质量 — 第 51 位)。根据就业市场和员工技能的指标,排名甚至更低:88 — 按就业水平
摘要:信用风险分析 (CRA) 量子算法旨在提供比传统类似方法更快的二次加速。尽管如此,商业领域的专家已经发现现有方法存在重大局限性。因此,我们提出了一种新的 CRA 量子算法变体来解决这些限制。具体来说,我们通过使其能够考虑多个系统性风险因素来改进投资组合中每项资产的风险模型,从而为每项资产的违约概率建立更现实、更复杂的模型。此外,我们通过消除仅使用整数值的限制来提高违约损失输入的灵活性,从而能够使用金融部门的真实数据来建立公平的基准测试协议。此外,所有提议的增强功能都通过量子硬件的经典模拟进行了测试,并且对于我们工作的这个新版本,还使用 IBM Quantum Experience 的 QPU 来为未来的研究提供基准。我们提出的 CRA 量子算法变体解决了当前方法的重大局限性,并强调了电路深度和宽度方面的成本增加。此外,它还为更现实的软件解决方案提供了一条途径。事实上,随着量子技术的进步,所提出的改进将为金融部门带来有意义的规模和有用的结果。
在许多地下和地下操作(例如采矿,地下储藏室和深地热能)中,摇滚媒体的诱导和/或预先存在的破裂提出了主要的完整性,性能和安全性问题。本论文将重点放在安德拉(Andra)在Callovo-Oxfordian(Cox)粘土形成的Meuse/Haute-Marne Underground Laboratory(M-HM URL)上构建的封闭结构。该研究将建立在许多原位观察和测量值(孔隙压力,收敛,岩石膨胀,诱发的压裂等)上。在M-HM URL上连续进行了20多年的时间,自2000年以来,数值的模块不断地富集,以整合与该宿主岩石行为相关的科学进步(Manica等人。2022,Souley等。2023)。后者本质上是连续的,尚未提供令人满意的繁殖,并在M-HM URL结构周围观察到的诱导裂缝(通常称为d ammated z One的Edz或e Xtent)的几何形状和拓扑结构(Armand等2014,见图1),随着时间的推移,其发展机制在中期和长期内预计将发生在EDZ内。此外,EDZ的响应和时间演变一方面是存储库的其他组件(支持,衬里等)的性能。,另一方面,在近场的时间和给定流体的循环(液体和/或气态)的循环中。