人工智能 (AI) 的应用是耳鼻喉科和通信科学领域的一个新兴领域。2020 年 10 月 26 日,杜克大学就该主题召开了一次虚拟研讨会,全球有 170 多名参与者参加。本评论介绍了研讨会期间除一次演讲外的所有演讲的摘要;所有演讲的录音以及演讲的讨论内容均可在 https:// www.youtube.com/watch?v=ktfewrXvEFg 和 https:// www.youtube.com/watch?v=-gQ5qX2v3rg 上找到。每篇摘要约 2500 字,每篇摘要包含两幅图。这种详细程度远远超出了传统评论中提供的简短摘要,因此可以更深入地了解当前耳鼻喉科 AI 应用的强大功能和多样性
我们从一幅改编自 Don McGreal 和 Ralph Jocham 合著的《专业产品负责人》的图画开始。这本书和本文最后的一些其他参考资料将是尝试和创建模型的工具箱中的一些工具的绝佳去处。这张图真正地向我们展示了我们正在尝试解决的问题。公司愿景是什么?产品愿景是什么?该产品愿景如何帮助和实现公司愿景?如您所见,嵌套的圆圈支持更高级别的项目,就像更高级别的项目可以被较小的项目分解一样。请记住 - 您不需要为每一层解决所有问题。解决足够多的最有价值的问题并追求细节。您随时可以回过头来并在以后添加更多价值。我建议好好读一读这本书,不仅可以了解可以使用的有用模型,还可以了解愿景、价值观、验证图表中显示的想法。
“如果我们共同努力造福所有人,提高我们用新思想和新方法领导的能力,我们加勒比人民一定能够创造变革并塑造真正的发展。”这是新任校园校长 Rose-Marie Belle Antoine 教授发出的行动号召和挑战。因此,从这个角度回顾她任职的第一年似乎很合适。当我们浏览年度报告时,我们见证了校园对这一挑战的回应。封面上生动的画面——色彩和形状的万花筒——象征着我们校园社区每个成员以及利益相关者的独特贡献。它提醒我们,虽然当我们聚集在一起时——大学、政府、私营部门、员工、学生、校友和公众——个别作品的形状和色调可能有所不同,但我们可以创造出新的和美丽的东西。封面上半幅图像的位置也提醒我们,有时你需要退后一步——或翻页——才能欣赏完整的画面。封面艺术来源:Nicole Huggins-Boucaud 使用 Adobe Firefly
摘要:研究了混合助剂和配方杀菌剂在空中施用条件下对喷雾雾化和田间移动的影响。进行了高速风洞测试,以确定所选处理方法产生的液滴大小。这些处理方法包括“空白”(水加非离子表面活性剂)以及另外五种含有配方杀菌剂的溶液,其中四种含有额外的助剂。风洞测试使用扁平扇形喷嘴和为田间试验选择的操作参数(喷雾压力、喷嘴方向和空速)测量液滴大小。然后在田间评估这些处理方法的幅内和顺风沉积情况,并使用测量结果的质量平衡将每种配方产品处理方法与参考处理方法进行比较。风洞实验结果表明,配方产品混合罐产生的液滴大小与水和非离子表面活性剂“空白”参考相比有显著差异
摘要:研究了混合助剂和配方杀菌剂在空中施用条件下对喷雾雾化和田间移动的影响。进行了高速风洞测试,以确定所选处理方法产生的液滴大小。这些处理方法包括“空白”(水加非离子表面活性剂)以及另外五种含有配方杀菌剂的溶液,其中四种含有额外的助剂。风洞测试使用扁平扇形喷嘴和为田间试验选择的操作参数(喷雾压力、喷嘴方向和空速)测量液滴大小。然后在田间评估这些处理方法的幅内和顺风沉积情况,并使用测量结果的质量平衡将每种配方产品处理方法与参考处理方法进行比较。风洞实验结果表明,配方产品混合罐产生的液滴大小与水和非离子表面活性剂“空白”参考相比有显著差异
其中 W e 和 L e 分别是主椭圆图案的宽度和长度。由于血滴的速度和质量未知,因此该撞击角度仅用于近似估计创伤发生的高度;每根细绳仍然沿长轴方向笔直拉伸,但与地平面成 α 度。由于血滴的抛射运动,此过程至少为受害者被击中的高度设置了上限。已经开发出商业软件来计算公式 (1) 和长轴角 γ,用户点击数字图像中的点后即可计算(见图 1)[3, 9]。据我们所知,在手动输入每个污点的全局位置后,该软件还允许存储角度并用于绘制虚拟细绳。我们的目标是自动执行 (A) 每个污渍的图像分析,以及 (B) 将多幅图像校准为具有统一坐标系的俯视图。我们假设计算机视觉可以帮助自动化和量化血液飞溅分析的可靠性。
除了在航天工业、天文学和高精度计量 [1] 中的众所周知的应用外,在低温下运行的先进 CMOS 技术是实现大规模量子计算 [2]– [4] 和提高数据中心计算性能的下一个关键步骤之一。虽然后一种应用可能主要限于 77 K(LN2)的温度范围,但大部分集成量子比特控制系统将在液氦温度(4 K)(LNA、RF 振荡器等)下运行,甚至可以根据特定量子比特技术的功率和噪声限制在 mK 范围内运行。因此,经典 CMOS 逻辑与量子比特的紧密集成不仅有助于缓解布线限制,而且还能减少读写操作期间的信号失真。关于先进 CMOS 技术的最新出版物主要关注低温下改进的器件特性(亚阈值摆幅、导通电流、泄漏等)[5]–[7]。由于测量限制,例如低温恒温器中可用的探头数量(通常最多