第1章简介1 1.1什么是信号?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 1.2信号分类。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 1.2.1模拟或数字信号。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 1.2.2周期性和十个杂志信号。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.2.3确定性和随机信号。。。。。。。。。。。。。。。。。。。。。。。。。10 1.2.4真实和复杂的信号。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 1.3典型的现实世界生物医学信号。。。。。。。。。。。。。。。。。。。。。。。。11 1.3.1脑电图(EEG)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 11 1.3.2心电图(ECG)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 14 1.3.3电击图(EOG)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 14 1.3.4电视图(ERG)。 。 。 。 。 。 。 。 。 。 。 。 。11 1.3.1脑电图(EEG)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 1.3.2心电图(ECG)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.3.3电击图(EOG)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.3.4电视图(ERG)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 1.3.5肌电图(EMG)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 1.4结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16
DME 与其军事客户和 OEM 合作,为 ATACTS 将测试的每种无线电设备建立和验证测试程序。根据批准的程序,典型的测试场景可能包括测量无线电设备的 RF 输出、调制(无论是 FM 偏差还是百分比 AM 调制、跳频还是非跳频)、误码率 (BER) 和输出信号的频率稳定性,然后通过向无线电设备提供调制信号来测试无线电设备的 RF 输入,并验证无线电设备的音频或数字信号以检查是否出现了正确的信号。通过使用 ATACTS 系统的刺激和响应功能,技术人员可以验证多种类型的无线电设备是否正常工作。
n 通用 CM6G 型气体热量计用于测量和控制样品气体的热值或沃泊指数 (WI)。在该热量计中,样品气体在燃烧器中与空气一起燃烧,并使用热电偶检测燃烧器入口处燃烧废气和进料空气之间的温差。该热量计使用孔板检测样品气体和空气的流量作为压差,并将压差转换为数字信号,然后通过数字计算补偿流量变化。该方法具有极高的可靠性,因此可用于控制钢厂和石化行业中各种类型熔炉的热输入,也可用于控制城市煤气的热量。
引言CT自1971年首次引入诊断和治疗性医学领域已广泛使用,因为它的快速扫描时间,出色的空间分辨率和广泛的可用性[1]。X射线检测器的CT扫描仪的关键组件对于创建图像至关重要,并且对辐射剂量和图像质量都有重大影响。根据扫描仪模型和供应商的次要实现和设计变化,所有当前的商业CT扫描仪都使用固态探测器,并具有可比的第三代旋转旋转式设计[2]。减弱的X射线梁由CT扫描仪检测器转化为用于计算机处理的数字信号[3]。检测器特征包括效率,稳定性,动态范围,响应时间和余辉[4]。
操作理论SR仪器患者称重系统是数字量表。应变 - 规范力细胞将施加的权重的力转化为模拟信号。该信号被操作放大器放大,并通过模拟转换器的模拟转换为数字信号。数字信号被转移到过滤的微控制器上,转换为适当的单元并显示在液晶显示屏上。应变器力细胞每个都包含四个安装在完整的惠斯通桥构型中的应变量表。由于系统上施加的质量,这些桥梁将力电池的物理运动转换为电阻的微小变化。这些电阻变化会在整个惠斯通桥上产生电压差,该桥由操作放大器放大。放大器配置为当前总和每个单元的输出。操作放大器的输出由数字转换器的类似物数字化。Sigma-Delta转换器总和一个快速序列为0(0伏)和1(参考电压),以与放大器的输入达到平衡。微型控制器平均并过滤模拟转换器的数字输出,减去在系统零操作过程中保存的值,并扩展过滤后的输出,然后在液晶显示屏上显示结果。微型控制器执行移动的数据滤波器,以进行连续称重,并且对于自动持有,微控制器在锁定读数之前先执行信号稳定性的检查。如果在自动持有模式下数据方差大于0.1%,则微控制器将重置过滤器并开始新的过滤周期。可以将微控制器放置在可以重新校准系统的校准模式下。在校准模式下,系统斜率是在2分校准模式下从两个点(零和全尺度)计算得出的,或者在3点校准模式下从三个点(零,一半和全尺度)计算斜率和坡度的变化。
摘要 未来的太空任务将处理和分析机载图像,对飞行计算提出了更高的要求。即使与笔记本电脑和台式电脑相比,传统飞行硬件提供的计算能力也有限。新一代商用现货 (COTS) 处理器,如 Qualcomm Snapdragon,可在小尺寸重量和功率 (SWaP) 下提供大量计算能力,并以图形处理单元 (GPU) 和数字信号处理器 (DSP) 的形式提供直接硬件加速。我们在 Qualcomm Snapdragon SoC 上对各种仪器处理和分析软件(包括机器学习分类器)进行了基准测试,该 SoC 目前由国际空间站上的 HPE 星载计算机-2 (SBC-2) 托管。索引术语 — 边缘处理、空间应用、机器学习、人工智能
DAU 是 EICAS 的中央数据收集点。DAU 1 专用于收集前飞机系统和左发动机的数据。DAU 2 收集后飞机系统和右发动机的数据。发动机数据通过 FADEC 和直接从发动机传感器发送到 DAU。DAU 收集的离散信号被转换成数字信号并发送到集成计算机 (IC-600)。IC 600 中有一个符号生成器,它为显示单元提供图像。每个 DAU 都是双(A 和 B)通道单元。两个 DAU 上的通道 B 都作为备用源,如果通道 A DAU 发生故障,必须通过 DAU 复原按钮手动选择。两款 IC-600 均使用现场 DAU 的 A 通道作为主要信息来源。
近几年,模拟数字转换器 (ADC) 和数字信号处理器(包括专用集成电路)的硬件开发进展迅速。这些进步为使用 IF 数字化(在某些情况下使用 RF 数字化)的无线电接收器的开发铺平了道路。这些接收器的应用预计将在蜂窝移动、卫星和个人通信服务 (PCS) 系统等领域迅速增加。本文研究了由于这些设备的硬件限制而对这些接收器施加的限制。列出了一些最先进的 ADC、信号处理器和专用集成电路的示例。本文讨论了各种量化技术、非线性压缩设备、用于改善动态范围的后数字化算法、采样下变频器和专用集成电路,因为它们有望在开发这些类型的接收器中发挥作用。还介绍了几个在 IF 和 RF 上采用数字化的无线电接收器示例。