噪声中型量子 (NISQ) 设备缺乏错误校正,限制了量子算法的可扩展性。在这种情况下,数模量子计算 (DAQC) 提供了一种更具弹性的替代量子计算范式,它通过将单量子位门的灵活性与模拟的稳健性相结合,表现优于数字量子计算。这项工作探讨了噪声对数字和 DAQC 范式的影响,并证明了 DAQC 在缓解错误方面的有效性。我们比较了超导处理器中各种单量子位和双量子位噪声源下的量子傅里叶变换和量子相位估计算法。DAQC 在保真度方面始终超越数字方法,尤其是随着处理器尺寸的增加。此外,零噪声外推通过减轻退相干和固有误差进一步增强了 DAQC,对于 8 量子位实现了 0.95 以上的保真度,并将计算误差降低到 10 −3 的数量级。这些结果证实了 DAQC 是 NISQ 时代量子计算的可行替代方案。
1 BASQUE国家的物理化学系UPV / EHU,Apartado 644,48940 Leioa,西班牙2 Tecnalia,Bastondo Bidea Ediifio 700,48160 Derio AIN 4原子,分子和核物理学系,塞维利亚大学,塞维利亚大学,梅赛德斯S / N,塞维利亚41012,西班牙5号,塞维利亚州塞维利亚大学塞维利亚大学,塞维利亚大学塞维利亚大学塞维尔大学,塞维利亚大学S / N,塞维尔大学,塞维尔斯大学41092 41092 41092 41092 6 6 CARLOS I研究所西班牙格拉纳达7 Ikerbasque,巴斯克基金会科学中心,Plaza Euskadi 5, 48009 Bilbao, 西班牙 8 巴斯克应用数学中心 (BCAM),Alameda Mazarredo 14, 48009 Bilbao, 西班牙
量子计算机的最初应用之一是量子系统的模拟。在过去的三十年中,模拟封闭量子系统和更复杂的开放量子系统的算法开发取得了长足的进步。在本教程中,我们介绍了用于模拟单量子比特马尔可夫开放量子系统的方法。它将各种现有符号组合成一个通用框架,可以扩展到更复杂的开放系统模拟问题。详细讨论了目前唯一可用于单量子比特开放量子系统数字模拟的算法。对更简单通道的实现进行了修改,消除了对经典随机采样的需求,从而使修改后的算法成为严格的量子算法。修改后的算法利用量子分叉来实现接近总通道的更简单通道。这避免了对具有大量 CNOT 门的量子电路的需求。Quanta 2023;12:131-163。
摘要 为 CDC 1604 数字计算机编写了一个模拟大型电子模拟计算机的数字计算机程序。除了提供许多在电子模拟计算机中很少见的非线性计算元素外,该程序还接受输入数据,其形式可以直接从框图或模拟计算机接线图中写下来。使用数字绘图仪可以以绘制的曲线形式获得图形输出。输入语言的简单性使没有数字计算机经验的人也可以轻松使用该程序。这个数字计算机程序称为 DYSAC,是数字模拟计算机的缩写,实际上是一个完整的编程系统,并且与 FORTRAN 一样,它具有一种特殊的语言来方便使用。
本文介绍了一种光伏 (PV) 储能系统的综合设计和控制策略。该系统由一个 2kW 光伏系统、两个转换器电路、一个 6 欧姆的电阻负载和一个集成直流总线的锂离子电池存储组成,为电阻负载提供恒定功率。该方案提供了两种转换器拓扑,一种是升压转换器,另一种是 DC/DC 双向转换器。升压转换器直接串联连接到 PV 阵列,而双向 DC/DC 转换器 (BDC) 连接到电池。升压转换器用于调节 PV 阵列的最大功率点跟踪 (MPPT)。双向控制器的闭环控制采用 Takagi-Sugeno 模糊 (TS-Fuzzy) 控制器来实现,以调节电池充电和放电功率流。所提出的方案提供了良好的直流总线电压稳定性。给出了所提出的控制方案在 MATLAB/Simulink 下的仿真结果,并与比例积分 (PI) 控制器进行了比较。在实时数字模拟器(RTDS)上验证了MATLAB获得的仿真结果。
硬件在环 (HIL) 或控制器在环仿真是一种用于开发和测试控制器和保护系统的技术。目标是验证和认证控制器和保护系统软件程序的功能、性能、质量和安全性。为了实现这一点,被测的实际控制和保护设备通过电流和电压接口连接到模拟器,就像在现实生活中一样。模拟器以高精度和高保真度模拟模型系统在正常和故障条件下的稳态和瞬态行为。通过重现现实,控制器被“欺骗”相信它已连接到真实的物理系统。然后就可以获得在任何操作条件下测试控制器和保护设备所需的所有灵活性。电力硬件在环 (PHIL) 是扩展到电力组件的 HIL 概念。在 PHIL 仿真中,I/O 需要高功率流来测试电力转换器、发电机、FACTS 等。成功可靠地实施 PHIL 和 HIL 仿真需要合理的模型、快速的程序执行、反应时间低于几微秒以及快速的 I/O 通信,因此控制器和保护系统在与实际提交的条件相同的条件下进行测试。您还需要一组工具来监控和与模拟器和可视化工具交互以解释结果(范围、图表、数据记录等)。除了可扩展性之外,这些是 OPAL-RT 的 eMEGAsim (tm) 实时数字模拟器的主要功能。
在开始安装、接线和其他工作之前,请务必从外部关闭所有阶段的电源。否则,可能会导致产品损坏或故障。请务必将 FG 引脚接地到保护接地导体。否则,可能会导致故障。确认产品的额定电压和引脚布局后,正确接线模块。否则,可能会导致火灾或故障。确保没有碎屑和电线碎片等异物进入模块。异物可能会导致火灾、故障或故障。请勿将一键连接器类型/连接器类型小型远程 I/O 单元的 I/O 用一键连接器插头意外插入模拟 I/O 用一键连接器。否则,可能会导致模块损坏。务必将未接线的一键式连接器插头安装到电源/FG 的开放式一键式连接器上。否则,可能会引起故障或误动作。将通信和电源线连接到模块时,务必将它们穿入导管或用夹子夹紧。否则,可能会因松动、移动或意外拉动电缆而损坏模块和电缆,或者因电缆连接故障而引起误动作。从模块断开通信和电源线时,请勿握住并拉动电缆部分。松开连接到模块的部分的螺钉后,断开电缆。拉动连接到模块的电缆可能会损坏模块和电缆,或者因电缆连接故障而引起误动作。
默认适配器设计符合 XMC 规范 (ANSI/VITA 42.3-2006) 和传导冷却 XMC (CCXMC) 规范 (ANSI/VITA 42.0-2005),并提供坚固耐用、工业级和商业级版本。可选 PMC 适配器配置符合 PMC 规范 (ANSI/VITA 32-199x) 和传导冷却 PMC (CCPMC) 规范 (ANSI/VITA 20-2001)。带有前面板 I/O 的版本也可作为 XMC (ANSI/VITA 42.0-2005) 和 PMC (IEEE P1386.1) 外形尺寸的选项提供。