摘要 - 飞机维护、修理和大修 (MRO) 是飞机生命周期成本 (LCC) 的主要组成部分之一。提高 MRO 效率并降低 MRO 成本是降低 LCC 的主要方法之一。在现代航空技术中,航空电子设备的复杂性及其维护量不断增加。传统的故障预测方法难以应用于复杂的技术系统,因此有必要缩短 MRO 间隔。本研究提出了人工神经网络 (ANN) 的数学方法作为解决此问题的可能方法。无人机 (UAV) 的航空电子设备是研究对象。分析了传统方法和 ANN 方法的可靠性和故障预测,并进行了结果比较。研究表明,所用方法适用于解决此问题。所得结果显示可靠性很高。建议进一步研究以扩展到更复杂的航空电子设备飞机。在 MRO 系统中引入 ANN 具有诸多优势,包括可以延长航空电子设备的维修间隔和预测故障,同时考虑到运行的外部因素。这必然会降低 LCC 并提高安全性。
摘要 - 飞机维护、修理和大修 (MRO) 是飞机生命周期成本 (LCC) 的主要组成部分之一。提高 MRO 效率并降低 MRO 成本是降低 LCC 的主要方法之一。在现代航空技术中,航空电子设备的复杂性及其维护量不断增加。传统的故障预测方法难以应用于复杂的技术系统,因此有必要缩短 MRO 间隔。本研究提出了人工神经网络 (ANN) 的数学方法作为解决此问题的可能方法。无人机 (UAV) 的航空电子设备是研究对象。分析了传统方法和 ANN 方法的可靠性和故障预测,并进行了结果比较。研究表明,所用方法适用于解决此问题。所得结果显示可靠性很高。建议进一步研究以扩展到更复杂的航空电子设备飞机。在 MRO 系统中引入 ANN 具有诸多优势,包括可以延长航空电子设备的维修间隔和预测故障,同时考虑到运行的外部因素。这必然会降低 LCC 并提高安全性。
摘要 - 飞机维护、修理和大修 (MRO) 是飞机生命周期成本 (LCC) 的主要组成部分之一。提高 MRO 效率并降低 MRO 成本是降低 LCC 的主要方法之一。在现代航空技术中,航空电子设备的复杂性及其维护量不断增加。传统的故障预测方法难以应用于复杂的技术系统,因此有必要缩短 MRO 间隔。本研究提出了人工神经网络 (ANN) 的数学方法作为解决此问题的可能方法。无人机 (UAV) 的航空电子设备是研究对象。分析了传统方法和 ANN 方法的可靠性和故障预测,并进行了结果比较。研究表明,所用方法适用于解决此问题。所得结果显示可靠性很高。建议进一步研究以扩展到更复杂的航空电子设备飞机。在 MRO 系统中引入 ANN 具有诸多优势,包括可以延长航空电子设备的维修间隔和预测故障,同时考虑到运行的外部因素。这必然会降低 LCC 并提高安全性。
摘要 - 飞机维护、修理和大修 (MRO) 是飞机生命周期成本 (LCC) 的主要组成部分之一。提高 MRO 效率并降低 MRO 成本是降低 LCC 的主要方法之一。在现代航空技术中,航空电子设备的复杂性及其维护量不断增加。传统的故障预测方法难以应用于复杂的技术系统,因此有必要缩短 MRO 间隔。本研究提出了人工神经网络 (ANN) 的数学方法作为解决此问题的可能方法。无人机 (UAV) 的航空电子设备是研究对象。分析了传统方法和 ANN 方法的可靠性和故障预测,并进行了结果比较。研究表明,所用方法适用于解决此问题。所得结果显示可靠性很高。建议进一步研究以扩展到更复杂的航空电子设备飞机。在 MRO 系统中引入 ANN 具有诸多优势,包括可以延长航空电子设备的维修间隔和预测故障,同时考虑到运行的外部因素。这必然会降低 LCC 并提高安全性。
摘要 – 飞机维护、修理和大修 (MRO) 是飞机生命周期成本 (LCC) 的主要组成部分之一。提高 MRO 效率并降低 MRO 成本是降低 LCC 的主要方法之一。在现代航空技术中,航空电子设备的复杂性及其维护量不断增加。传统的故障预测方法难以应用于复杂的技术系统,因此有必要缩短 MRO 间隔。本研究提出了人工神经网络 (ANN) 的数学方法作为解决此问题的可能方法。无人机 (UAV) 的航空电子设备是研究对象。分析了传统方法和 ANN 方法的可靠性和故障预测,并进行了结果比较。研究表明,所用方法适用于解决此问题。所得结果显示可靠性很高。建议进一步研究以扩展到更复杂的航空电子设备飞机。在 MRO 系统中引入 ANN 具有许多优势,包括可以增加航空电子设备的维修间隔和故障预测,同时考虑到外部运营因素。这必然会降低 LCC 并提高安全性。
在航空摄影测量中,使用附加参数进行自校准有着悠久的传统,即使这些参数经常出于实用目的而使用,并且没有太多数学或物理依据。它们还与其他校正参数高度相关。短距离摄影测量中的高相关性早已为人所知,这尤其是由于用作准标准的布朗自校准模型。迄今为止,这些高相关性的负面影响尚未得到充分研究。畸变校正是摄影测量自校准的重要组成部分;在计算机视觉领域不一定是这种情况:在这里,自动校准描述了一些参数的定义,而不考虑失真和近似值。尽管在过去的几十年里对 N≥3 图像的自动校准进行了广泛的研究,但这仍然是一个困难的话题。