摘要 — 卫星遥测数据通常使用预定义的遥测数据表来收集。在选择要收集的数据组后,无论卫星的运行状态如何,都会以预定的间隔重复收集所选数据包中的相同数据。但是,如果卫星运行期间出现特定错误或转换为特定状态,则必须包含与卫星状态相对应的特定数据或修改某些数据集的收集频率。鉴于低地球轨道卫星的接触时间和通信速度有限,在恶劣的通信条件下或卫星处于安全模式时,可能无法完成数据传输。因此,根据当前情况选择性地仅传输必不可少的数据的功能至关重要。本文概述了韩国开发的用于低地球轨道卫星的遥测数据处理方法,并概述了根据卫星运行状态自动调整遥测数据的机制。此外,它还介绍了根据当前条件选择性传输重要数据的各种策略。
我们提出了医学信息平台(MIP),这是科学和医学界的在线集中平台。它介绍了位于医院中的偏心的患者数据,帮助临床医生,临床科学家和研究人员确定疾病独有的模式,并提供明确的诊断和个性化治疗方法。该平台使用户能够从预处理的神经生理和医学记录中访问统一的医学数据,以及研究同类数据集,而无需传输原始的临床数据。此功能有助于对医疗数据进行利用和分析,同时保留敏感患者信息的隐私和安全性。MIP将数据科学和机器学习与数据技术,尤其是数据集成,安全计算,分散的分布式查询执行以及低水平,有效的科学管道执行,从而利用了现代数据引擎的特征,例如矢量化,并行化,并行化和JIT汇编。MIP是计算机科学家,临床科学家和医学专业人员多年的多年努力的结果。迄今为止,它已在欧洲的40多家医院中部署和使用,另外12个装置正在进行中。
在关系数据上提供深度学习(DL)模型已成为各种商业和科学领域的关键要求,最近引发了人们日益增长的兴趣。在这篇有远见的论文中,我们开始对代表体系结构进行全面探索以满足要求。我们突出显示了三个关键范式:最新的以DL中心体系结构将DL计算卸载到专用的DL框架上。以UDF为中心的体系结构将一个或多个张量计算封装到关系数据库管理系统(RDBMS)中的用户定义功能(UDFS)中。潜在的以关系为中心的体系结构旨在通过关系运算符代表大规模的张量计算。虽然这些体系结构中的每一个都在特定的使用方案中表现出了希望,但我们确定了这些体系结构的无缝集成和这些体系结构之间的中间地面的紧迫要求。我们深入研究了阻碍整合并探索创新策略以关闭它们的差距。我们提出了一种建立新型RDBM的途径,以实现一类广泛的数据密集型DL推理应用程序。
气候重新分析和气候投影数据集为研究人员,学生和讲师提供了潜力,可以从20世纪后半叶获得物理知识,全球,时间和空间连续的气候数据,并探索不同的潜在潜在未来气候。尽管这些数据在生物学,环境和社会科学中都具有重要用途,但潜在用户通常会面临处理和访问没有专业知识,设施或帮助的处理和访问无法克服的数据的障碍。因此,在研究和教育社区中,气候重新分析和投射数据目前已实质上不足。为了解决这个问题,我们提出了两个简单的“点击点击”图形用户界面:Google Earth Engine气候工具(Geeclimate),可访问气候重新分析数据产品;和Google Earth Engine CMIP6 Explorer(GeeCe),允许处理和提取CMIP6投影数据,包括创建自定义模型集合的能力。Geeclimt和Geece一起提供了可轻松访问387多个数据的数据,这些数据可以在常用的电子表格(CSV)或栅格(Geotiff)格式中输出,以帮助随后进行平地分析。两个工具中包含的数据包括:20种大气,陆地和海洋重新分析数据产品;根据1950 - 2022年ERA5-Land数据计算出的年度分辨率气候变量(与WorldCLIM相当)的新数据集; 34个模型模拟,SSP2-4.5和SSP5-8.5方案的34个模型模拟的CMIP6气候投影输出。还提供了使用两种工具数据的五个案例研究。新数据产品也可以轻松地添加到工具中,因为它们在Google Earth Engine数据目录中可用。这些表明Geeclimt和Geece是易于扩展的工具,可以删除多个进入的障碍,可以将气候重新分析和投影数据打开到新范围更广泛的用户。
多路复用成像方法越来越多地用于大型组织区域的成像,从样品的数量和每个样品的图像数据大小来产生大型成像数据集。由于从大量的染色目标中频繁的技术文物和异质性填充,可以简化多路复用图像的分析,因此已经开发出了自动化的管道,因此已经开发了自动化的管道,因此已经开发出了自动化的管道,因此已经开发出了自动化的管道。在这些管道中,一个处理步骤的输出质量通常取决于上一个步骤的输出和每个步骤的错误,即使它们显得很小,也可以传播和混淆结果。因此,在图像处理管道的每个不同步骤中,严格的质量控制(QC)对于正确分析和解释分析结果以及确保数据的可重复性至关重要。理想情况下,QC应该成为成像数据集和分析过程的组成部分且易于检索的部分。然而,当前可用的框架的局限性使交互式QC难以集成大型多重成像数据。鉴于多路复用成像数据集的大小和复杂性的增加,我们提出了将QC整合到图像分析管道中的不同挑战,并提出了可能建立在生物图像分析最新进展之上的可能解决方案。
尊敬的 Marklein 参议员和 Born 众议员:威斯康星州法规第 46.03(26) 条要求卫生服务部每年报告正在开发的信息系统项目,包括实施时间表、成本估算和确定服务费用的方法(如适用)。我们正在开发以下项目:1)州重要记录信息系统(SVRIS)第 2 部分 2)艾滋病药物援助计划(ADAP)在线门户 3)虚拟 ADRC 和全州资源数据库及实施项目 4)ADRC 取代 Wellsky 5)电子访问验证(EVV)– 家庭健康 6)部落共享储蓄 7)成人事故报告系统(AIRS) 8)出版物现代化项目和 Robohelp 迁移 9)将长期护理(LTC)遭遇整合到 MMIS 中 10)CARES:为儿童提供 12 个月的持续保障 11)CARES:无家属的健全成年人(ABAWD)变更第二阶段 12)CARES:食物共享不明确(FSUC)项目
摘要:中国拟建的超级金牛座神灯装置(STCF)是新一代正负电子对撞机,质心能量为2~7 GeV,峰值亮度为0.5×1035cm−2s−1。开发了STCF离线软件(OSCAR),支持离线数据处理,包括探测器仿真、重建、刻度以及物理分析。针对STCF的具体要求,OSCAR基于HEP实验轻量级通用软件SNiPER框架进行设计和开发。除了常用的 Geant4 和 ROOT 软件外,OSCAR 还采用了 HEP 社区中一些最先进的软件包和工具,例如探测器描述工具包 (DD4hep)、普通旧数据 I / O (podio) 和英特尔线程构建模块 (TBB) 等。本文将介绍 OSCAR 的总体设计和一些实现细节,包括事件数据管理、基于 SNiPER 和 TBB 的并行数据处理以及基于 DD4hep 的几何管理系统。目前,OSCAR 已全面投入使用,以促进 STCF 探测器的概念设计和其物理潜力的研究。
如今,已有多种基于星载和低空空中/无人机平台的高光谱遥感传感器可用于地球科学应用,具有多种光谱和空间分辨率[1-4]。高光谱遥感图像的发展促进了新型图像处理技术的发展,并在土壤地球化学、水质评估、森林物种制图、农业压力、矿物蚀变制图等广泛领域取得了令人欣喜的成果。在过去的二十年里,不同的空间机构发射了多个星载高光谱传感器(例如,美国国家航空航天局 (NASA) 于 2000 年 11 月发射的 Hyperion;日本宇宙航空研究开发机构 (JAXA) 于 2019 年 12 月发射的高光谱成像仪套件 (HISUI);意大利航天局 (ASI) 于 2019 年 3 月发射的高光谱应用任务前体探测器 (PRISMA))[1,5,6]。这些传感器充分利用了高光谱数据,并带来了从噪声消除到光谱制图等数据处理方法的创新。先前的研究强调了高光谱星载传感器在识别纯目标和识别具有弱光谱特征的光谱目标方面的局限性,因为这些高光谱传感器具有粗空间分辨率(通常为 20 m 至 30 m)和较差的信噪比(例如,Hyperion 在短波电磁域中的信噪比 (SNR) 较差)[7-10]。然而,这些星载传感器在环境监测方面取得了令人鼓舞的结果(例如,森林覆盖分类、检测森林的物候变化、土地利用/土地覆盖制图、农业土地覆盖表征、作物压力估计、岩性和矿物制图 [11-13])。高光谱图像处理解决了与分类方法相关的主要困难,例如相关数据的高维性和标准处理技术的有限可用性[14]。为了克服这些局限性,最近建立了几种机器学习算法,补充了高光谱数据处理的巨大潜力[14]。由于星载高光谱传感器缺乏全球覆盖,不同国家使用不同的先进高光谱传感器进行常规的基于飞机和无人机的高光谱调查,例如先进的可见红外光谱仪(AVIRIS)及其最新版本AVIRIS-下一代(AVIRIS-NG);HyMap;数字机载成像光谱仪(DAIS)等。这些传感器能够收集
摘要 — 脑机接口 (BCI) 用于各种应用场景,允许大脑和计算机之间直接通信。具体而言,脑电图 (EEG) 是获取由外部刺激引起的诱发电位的最常用技术之一,因为 P300 电位是从已知图像中引出的。机器学习 (ML) 和 P300 电位的结合对于验证受试者很有前景,因为每个人在面对特定刺激时产生的脑电波都是独一无二的。然而,现有的身份验证解决方案并未广泛探索 P300 电位,并且在分析最合适的处理和基于 ML 的分类技术时会失败。因此,这项工作提出了 i) 使用 P300 电位验证 BCI 用户的框架;ii) 在十个受试者身上验证该框架,创建采用非侵入性基于 EEG 的 BCI 的实验场景; iii) 框架性能评估,定义两个实验(二元和多类 ML 分类)和三个测试配置,逐步分析不同处理技术的性能以及使用时期或统计值进行分类之间的差异。该框架在两个实验中的最佳分类器都实现了接近 100% f1 分数的性能,突出了其在准确验证用户方面的有效性,并证明了使用 P300 电位进行基于 EEG 的身份验证的可行性。