注 1.— 所有对“无线电规则”的引用均指国际电信联盟 (ITU) 发布的《无线电规则》。 《无线电规则》会根据通常每两至三年举行一次的世界无线电通信大会《最后文件》中所体现的决定不时进行修订。有关国际电联与航空无线电系统频率使用相关的流程的更多信息,请参阅《民航无线电频谱要求手册》,其中包括经批准的国际民航组织政策声明(Doc 9718)。
在充满挑战的跨国环境中开展研究,为您提供绝佳的职业发展机会。您将有机会在尖端技术领域树立国际声誉。通过提供灵活的工作时间和异地工作的可能性,支持个人职业发展(例如会议、高级培训)以及满足员工的个人需求对我们来说非常重要。我们高度重视工作与家庭的兼容性。有关我们的科学卓越性和 IHP 工作环境的更多信息,请访问我们的网站。IHP 已通过 TOTAL E-QUALITY 认证,为男女提供平等的工作机会,并积极追求所有性别和所有群体的平等。我们促进女性的职业发展,并强烈鼓励她们申请。符合上述标准的残疾申请人将优先于具有同等相关资格的其他候选人。其他优势:
摘要。在我们迅速发展的数字时代,数据是企业和个人的命脉,保护敏感信息并确保安全的通信渠道变得至关重要。本研究论文介绍了一种新型的混合加密算法,旨在应对数据安全和安全通信的多方面挑战。所提出的算法利用了对称和不对称加密方法的有益特征,从而为可靠和适应性的安全解决方案开发了一种方法。该混合算法首先利用最先进的对称加密密码,高级加密标准(AES),以加密数据,同时有效地保留其机密性。为了进一步加强安全框架,采用了基于椭圆曲线密码学(ECC)的非对称加密组件进行安全密钥交换和数字签名算法(DSA),以进一步加强安全框架。密钥管理和交换机制经过精心设计,以承受攻击并保护加密密钥。本文全面分析了混合算法的安全性和计算效率。此外,它探讨了用于数据安全的技术和算法,突出了它们在不同领域的重要性。这种混合密码算法证明了其在通过严格的测试和评估中实现增强的数据安全和安全通信方面的有效性。本研究贡献了加密技术的先进知识,并在数字互连定义的时代中突出了数据安全性的重要性。
摘要 - 二十一世纪的特征是技术进步和自动化,增强了生活的舒适度和便利性。智能汽车由于自动化和嵌入式系统的进步而变得越来越受欢迎。传统的汽车模式正在现代化智能汽车,使全球企业投资于其开发和制造业。在这里,使用Li-Fi发射器和接收器电路在汽车之间传输数据,其发射器安装在前运行车辆的尾灯上,而接收器电路在前侧。为了避免崩溃,第二辆车的接收器电路在接收到通过可见光通信中传递的计算速度后修改其速度。本文提出了一种识别和防止汽车碰撞和事故的方法。
数据通信网络,简称网络(包括校园网、广域网 [WAN]、数据中心网络等),代表着电信和企业网络的逻辑演进。互联网是数据通信网络的诞生和发展代表。数据通信网络本质上是从 TCP/IP 发展而来,负责在地理分布的长距离和有限域上智能地路由数据。与数据通信网络相关的技术发展更快,并且在连接数字时代的物理和虚拟世界方面有各种要求。数据通信网络的本质是底层互联网基础设施,它是现代世界数字融合的主要候选者。未来,数据通信网络将在连接数十亿数百个互联事物和对象的 ZB 级数据的交织和数字化中发挥重要作用——但由于某种原因,由于对其他数字技术的关注,它仍然被忽视和无人关注。
公共移动网络(LTE CAT1、M1 和 NB-IOT)——对于某些用例来说,这些网络可能是一种可行的、具有成本效益且部署速度相对快的选择,并且具有适当的弹性和安全包装,如用于智能计量或紧急服务网络 (ESN)。然而,在目前的形式下,此类网络无法提供执行这些服务所需的覆盖范围、弹性和安全性。由于网络是公用的并且支持多种服务,因此随着流量的增长,还存在拥塞和相关性能下降的风险。移动提供商还可以单方面选择将频谱重新分配给未来不兼容的技术或完全淘汰该技术(例如 2G/3G 网络)。
过去十年,对数据中心和网络服务的需求迅速增长。然而,由于更高效的电子硬件、向超大规模和云数据中心的迁移以及更高效的冷却基础设施等,近年来电力需求已经趋于稳定。本文对冷却技术进行了关键概述并讨论了研究差距。数据通信设施中的冷却技术大致可分为风冷和液冷系统。架空/地板下送风、热/冷通道布局和热/冷通道遏制是优化风冷系统性能的主要策略。架空地板架构已在数据通信设施中得到广泛采用,但存在大量气流泄漏(约 25-50%)。研究发现,最佳通风系统是硬地板设计,采用架空冷风输送和热风回风管道,而不是基于房间的送风和回风。冷通道遏制可以更好地降低机架的最高入口温度并抑制冷却系统故障时的温升,而热通道遏制可以提供更低的机架平均入口温度和更小的标准差,并且受服务器周围气密性的影响更小。随着机架功率密度超过 10 kW/机架且热流超过 100 kW/cm 2 ,传统的风冷系统不再是可行的热管理解决方案。喷雾冷却、冲击射流、浸没冷却、液冷微通道和热管等液体冷却方法是克服风冷系统容量限制的新兴技术之一。对于浸没冷却,过渡到过冷两相流沸腾、通过添加微结构或不规则性来创造更多的成核位点和更大的传热表面积来增强传热以及利用纳米流体是受到学者关注的突出增强策略。将电力电子模块浸入液体中可使热阻降低至空气冷却系统的 25%,或微通道或喷雾冷却等液体冷却系统的 30-50%。根据现有的冷却系统、总体热负荷和热点,热管系统可以作为独立单元或与空气冷却系统结合使用,即所谓的混合系统,为数据中心提供服务。与典型的空气冷却系统相比,混合系统可以分别降低 37-58% 和 20-70% 的年度冷却负荷系数和能耗。