软件工程师,Spectralux Avionics,华盛顿州雷德蒙德 2015 年 6 月 – 2022 年 6 月 主要专注于基于 STM32 微控制器平台的航空电子产品的 DO-178C 嵌入式系统开发。这包括软件需求开发以及 C、C++ 和汇编语言编程。协作设计航空电子产品的故障管理系统,并成为主要实施者。此外,还管理工程部门的配置管理存储库和需求数据库。附带项目包括:自动现场数据记录平台、基于 Linux 的嵌入式系统客户原型以及使用 Java 构建的用户界面模拟和设计工具。担任有关数据链路通信标准(RTCA SC-214 和 EUROCAE WG-92)的行业委员会会议的公司代表。
超低质量同轴电缆链路基于 AXON 的同轴电缆专业知识,比已经非常轻的低质量 SpaceWire 电缆轻近 30%。这种激进的解决方案比传统的双绞线方法小得多,也更灵活,与双绞线相比,它超过了高速串行数据链路的性能要求。虽然这些链路满足所有 SpaceWire 性能要求,但由于它们基于同轴电缆而非双绞线结构,因此 ESA 并未正式批准它们用于 SpaceWire。但是,根据客户的判断,它们可以证明是安装空间和质量预算极其有限的应用的一个有趣选择,或者特别是在使用 SpaceWire 的替代协议的情况下。重要提示:此解决方案的潜在用户必须亲自确保电缆与其应用兼容。
1.4 RPS 可以在 RLOS(无线电视线)和 RLOS 之外(BRLOS - 无线电视线之外)与 RPA 和 ATC 交互;在后一种情况下,它们使用卫星或机载链路。在卫星通信的情况下,没有关于 RPS 和卫星之间网络的信息,也没有关于地球到卫星信号跳跃次数的信息,也没有关于随之而来的信号延迟的信息。卫星通信带来了关键的操作挑战,即信号传输延迟增加且可能不可预测,以及卫星通信服务提供商认证或监管监督的监管挑战。在机载通信的情况下,对 C2 数据链路的某些要求(参见下文)导致有关 RPS 和 RPA 之间可用机载网络(A 网络)的完整信息(网络图);空中跳跃次数和信号延迟被最小化和已知。
为了确保产品的安全操作并能够正确使用所有功能,请仔细阅读这些说明!安全操作只能保证,如果将产品用于设计用于技术规范的范围内并在其范围内。确保您获取最新的技术信息,这些信息可以在www.lem.com下的最新关联数据表中找到。产品元素之间使用的数据链路电缆应为LEM传递的元素。必须由客户提供设置产品时间的时间来源。产品必须同步时间才能操作。产品的以太网接口不得暴露于公共网络;网络必须是私人并确保的。要确保正确操作,必须定期检查产品的日志完成;最大条目数为40000;如果日志已满,则产品的操作会停止。根据EN 50470-1:2006。
并非所有发电站都与电力和水务公司的中央系统建立了回程数据链路,但所有 SETuP 站点都安装了这些链路以支持数据收集。在 SETuP 站点,选定的站点电气性能数据趋势(标签)被压缩并从 HMI 计算机传输到中央企业 OSI PI 数据历史数据库。数百个标签被传输,包括所有仪表的频率、功率、电压和电流读数以及许多警报和其他参数。在具有类似控制系统的站点之间,标签集尽可能保持一致。PI 链路通常配置为仅在值变化超出指定偏差参数时发送读数,这意味着历史数据库中的结果数据不在固定间隔内。
从程序冗余的角度来看,拥有第二架飞机可以降低风险。为了降低每架飞机的风险,机载回收降落伞提供了紧急回收的最后机会。但是,可接受的风险扩展到飞机和机载系统,但不包括硬件和软件的资格测试等流程。完成必要的工作以确保飞行测试和飞行器团队在程序和培训方面经验丰富也极为重要。虽然使用相同的工程和核心人员进行完整的飞行测试程序可能很容易,但流程、软件和硬件的文档记录是一项真正的挑战,它比我们预期的要花费更多时间。在第 2 次飞行中,当数据链路丢失导致我们第一次发生重大紧急情况时,这种更加重视程序和培训的好处得到了凸显
说明TCS温度集中器系统通过“集中”数字网络链路上的几个信号来大大降低了在通用目的和危险区域应用中传输多个温度传感器测量的成本。TCM的16 I/O通道被迅速配置为接受RTD,T/C,MV和电阻/电位计信号输入的任何组合。它将输入转换为Hart®数字通信协议,并通过经济的HART数字数据链路将数据从现场传输到控制室。然后可以通过基于HART的控制系统或主机访问所有过程,状态和诊断信息。与Moore Industries HMC Hart-hart-Modbus转换器一起使用时,TCM接口与基于Modbus RTU的主机接口。另外,TCM可以与Moore Industries HES HART-ETHERNET网关系统结合,并连接到Modbus/TCP或Hart-IP主机。
随着车辆自主性的水平和接受度随着时间的推移而提高,无人驾驶飞行器将非常适合在传统地面程序控制最少的环境中运行。载人航空的基于性能的导航 (PBN) 要求和标准现已完善,结合数据链路/数据通信方面的进步,可能提供一条支持集成的近期途径。虽然某些类型的自主飞行器仍然存在尺寸、重量和功率限制,但波音公司认为,技术很快就会允许在适合城市空中交通应用的无人驾驶飞行器中加入经过认证的航空电子设备和装备。这种经过验证的导航方法的开发和演示可能是解决之前发现的许多挑战的基础。
我们的观察结果 国家空域系统 (NAS) 每天服务超过 44,000 个航班,高峰时段天空中有超过 5,000 架飞机。美国联邦航空管理局 (FAA) 的 20 个空中交通管制中心 (Centers) 对 NAS 的运营至关重要,它们负责管理高空空中交通。这些中心配备了航路自动化现代化 (ERAM) 系统,用于管理和控制高空运营,并为新系统提供基础设施,例如 FAA 的下一代航空运输系统 (NextGen) 的高空数据链路通信。应参议院商务、科学和运输委员会以及众议院运输和基础设施委员会及其航空小组委员会的要求,我们进行了此次审计。我们的目标是 (1) 评估 FAA 对 ERAM 的计划升级和 (2) 评估 ERAM 支持关键 NextGen 功能的能力。
Robyn Hopcroft、Eleanore Burchat 和 Julian Vince 空中作战部 国防科学技术组织 DSTO-GD-0463 摘要 本文献综述概述了与无人机 (UAV) 操作相关的人为因素问题。特别是,考虑了这些问题与采购用于海上巡逻和响应行动的高度自主、高空长航时 (HALE) 无人机的关系。在高度自动化的无人机系统中,最佳任务性能将要求操作员和自动化系统的角色互补。因此,解决了可能阻碍两者之间合作的因素,并提出了缓解潜在问题的建议。然后讨论转向人机界面 (HMI) 的设计,提供有关已建立的 HMI 设计原则和与操作员与飞机分离有关的问题的信息。最后部分涵盖了飞行期间控制权移交的空中交通管理程序、数据链路延迟及其对团队动态的影响、机组人员的选择以及无人机机组人员角色的划分。发布限制已批准公开发布