抽象的透明度是开发功能性和装饰性薄膜和涂料的关键因素,但是将纳米粒子掺入有机树脂中以改善其性质,使其经常使其不透明。在这项工作中,环氧/分层双氢氧化物(LDH)纳米复合涂料的光物理特性与环氧树脂中LDH的分散剂状态相关。根据含有0.1、0.5、0.7、0.7、1.0和3.0 wt%mg – al -– al -– al -– ldh和Zn – al -al -ldhs的膜的透明度,评估了固体环氧网络的质量。在高载荷下,直接透射率(y直接)减少,而涂料中的光散射相对于整洁的环氧树脂得到了改善。最高的Zn – al -LDH加载(3.0 wt%)略微恶化了透明度(Y Direct = 93.3),但仍高于含有0.5 wt%mg – al -ldh的环氧纳米复合材料(y直接= 89.8)。在含有1.0 wt%Zn – al -dh的环氧纳米复合材料中分配了一个良好的标签,而在MG -AL -LDH含量的CI标记方面,环氧/mg -al -LDH纳米复合材料较差。在添加0.1 wt%Zn – al -LDH后,T g值的增加约为28°C,表明Zn – al -LDH可以使环氧基质和纳米片的相互作用很强。然而,环氧/mg – al -ldh纳米复合材料的T g降低是由于不当分散体而导致的mg – al -– ldH纳米片与环氧基质之间弱相互作用的标志。通常,首次揭示了CI使化学交联与环氧/LDH纳米复合材料的光物理特性相关联。
观察到的温度记录将海面温度与陆地上的近地表空气温度相结合,对于理解气候变化和变化1-4至关重要。然而,由于测量技术和实践的变化,部分文档5-8以及不完整的空间覆盖范围9,全球平均表面温度的早期记录不确定。在这里我们表明,基于从海洋或土地数据的全球平均表面温度的独立统计重建,二十世纪初(1900-1930)对海洋温度的现有估计太冷。尽管在所有其他时期一致性很高,但基于海洋的重建平均比陆基的重建低约0.26°C。海洋冷异常是没有强制性的,气候模型中的内部变异性无法解释观察到的土地差异。基于归因,时间尺度分析,沿海网格细胞和古气候数据的几条证据支持了20世纪初期观察到的全球海面温度记录中存在实质性冷偏见的论点。尽管自19世纪中叶以来对全球变暖的估计没有影响,但纠正海洋冷偏见将导致二十世纪初期更适中的趋势趋势10,从工具纪录3中推断出的衰减量表3的估计值较低,而模拟和观察到的变暖比现有数据量更好的是比现有数据的更好的一致性2。
摘要。背景/目标:磷脂型二硫醇3-激酶(PI3K)/AKT信号通路的激活已与犬软组织肉瘤(STS)有关,并且可以用作预后标记。这项研究研究了肿瘤细胞中PI3K/AKT激活与肿瘤浸润淋巴细胞(TILS)之间的相关性。材料和方法:通过免疫组织化学对总共59个ST样品进行了标记,以计算包括CD3+ T细胞,CD8+ T细胞,CD8+ T细胞,CD20+ B细胞和FOXP3+调节性T细胞的密度。结果:48个样品(81.3%)的肿瘤内tils具有高密度的CD3+ T细胞(平均:283.3细胞/mm 2)和CD8+ T细胞(平均:134.8细胞/mm 2)。相反,CD20+ B细胞(平均:73.6细胞/mm 2)和FOXP3+调节T细胞(平均:9.2细胞/mm 2)很少。CD3+/CD8+,CD3+/CD20+和CD8+/CD20+TIL的丰度高度相关(分别为r = 0.895、0.946和0.856)。尽管如此,TIL密度与临床病理学参数无关
摘要:前期研究利用GWAS方法筛选出NOX4、PDE11A和GHR基因作为绵羊产仔数的重要候选基因,但尚未发现它们对产仔数的影响,也未发现与产仔数关联的位点。本研究首先根据前期10个绵羊品种的重测序数据,筛选出3个候选位点(NOX4的c.1057-4C>T、PDE11A的c.1983C>T和GHR的c.1618C>T)。利用Sequenom MassARRAY技术对3个位点进行基因分型后,对3个位点进行群体遗传学分析,并进行3个位点多态性与绵羊产仔数的关联分析。群体遗传学分析结果表明NOX4基因c.1057-4C>T和PDE11A基因c.1983C>T可能受到自然或人工选择的影响。关联分析结果表明小尾寒羊产羔数与NOX4基因c.1057-4C>T和PDE11A基因c.1983C>T显著相关(p<0.05),2个位点间无显著的交互作用。综上所述,NOX4基因c.1057-4C>T和PDE11A基因c.1983C>T可作为改良绵羊产羔数的候选分子标记。
量子通信网络依赖于使用单个光子在内的量子加密协议,包括量子密钥分布(QKD)。有关QKD协议安全性的关键要素是光子数相干(PNC),即零和一光子群之间的相位关系,这在很大程度上取决于激发方案。因此,要获得具有所需属性的空气量子,需要选择用于量子发射器的最佳泵送方案。半导体量子点产生高纯度和无法区分性的按需单个光子。利用量子点与刺激脉冲结合的两光子激发,我们证明了具有可控程度的PNC的高质量单光子的产生。我们的方法为量子网络中的安全通信提供了可行的途径。
背景 未来人类和机器人的深空探险将需要快速、高效的方式,在漫长的旅程中将高清图像、实时视频和大量数据从太空传送到地球。光通信系统已经在自由空间中提供高速率数据传输,可能为深空通信提供解决方案。林肯实验室和喷气推进实验室一直与 NASA 合作开展深空光通信计划,以开发和演示实现可靠、快速数据速率光通信的解决方案,往返于太阳系的遥远角落。光子计数相机就是其中一种解决方案。
我们提出了一种基于分裂自旋系综中类数相不确定关系来检测二分纠缠的方法。首先,我们推导出一个不确定关系,该关系在自旋系统中起到数相不确定性的作用。重要的是,该关系具有明确定义且易于测量的量,并且不需要假设无限维系统。基于这种不确定关系,我们展示了如何检测许多自旋 1/2 粒子的非极化 Dicke 态中的二分纠缠。将粒子分成两个子系综,然后在这两个部分上进行局部集体角动量测量。首先,我们提出一个二分爱因斯坦-波多尔斯基-罗森 (EPR) 转向标准。然后,我们提出一种可以在这种系统中检测二分纠缠的纠缠条件。通过将这些标准应用于 K. Lange 等人给出的最新实验,我们证明了这些标准的实用性。 [Science 360, 416 (2018)] 在冷原子的玻色-爱因斯坦凝聚态中实现狄克态,其中两个子集合在空间上彼此分离。如果考虑分裂自旋压缩态,我们的方法也同样有效。我们全面展示了如何处理实验缺陷,例如包括分区噪声在内的非零粒子数方差,以及尽管理想情况下 BEC 占据单一空间模式,但实际上其他空间模式的数量无法完全抑制这一事实。
步骤 1:输入 P 中第一个数字的值 步骤 2:输入 Q 中第二个数字的值 步骤 3:设置温度 = P 步骤 4:设置 P = Q 步骤 5:设置 Q= 温度 步骤 6:打印 P 和 Q 步骤 7:结束。