2005年,国会通过了PLCAA,该国会在大多数过失和产品责任诉讼中对州和联邦法院提供了对制造商,分销商和枪支经销商及其贸易协会的豁免权。枪支行业在适用于社会其他所有人的公共普通法原则下,享有这种独特的免于责任的免疫力。因此,枪支制造商和卖家并不考虑公众的安全。根据现行法律,与几乎所有其他消费产品制造商不同,枪支行业不能轻易被其产品损害的消费者起诉。它还允许枪支卖家对稻草购买者或贩运者视而不见,他们可能会购买数百种武器将其转移到没有背景检查的情况下。
背景:大数据驱动和人工智能 (AI) 与机器学习 (ML) 方法从未与医院信息系统 (HIS) 集成,用于预测急诊科 (ED) 胸痛患者的主要不良心脏事件 (MACE)。因此,我们进行了本研究以阐明这一点。方法:2009 年至 2018 年期间,共确定了三家医院 85,254 名患有胸痛的 ED 患者。我们将患者随机分为 70%/30% 的组别,以进行 ML 模型训练和测试。我们使用来自他们电子健康记录的 14 个临床变量,使用合成少数过采样技术预处理算法构建随机森林模型,以预测 1 个月内的急性心肌梗死 (AMI) 和 1 个月内的全因死亡率。还对随机森林、逻辑回归、支持向量聚类 (SVC) 和 K 最近邻 (KNN) 模型的预测准确度进行了比较。
将机器学习 (ML) 技术集成到车载自组织网络 (VANET) 中,可为自动驾驶和 ITS 应用提供有前景的功能。本文使用 DSRC 数据来评估不同 ML 模型(包括朴素贝叶斯、随机森林、KNN 和梯度提升)在正常和对抗场景中的有效性。由于数据集相对不平衡,因此采用合成少数过采样技术 (SMOTE) 进行采样,并采用防御性蒸馏来提高模型对对抗性扰动的弹性。从结果中可以清楚地看出,梯度提升和随机森林等模型在两种情况下都表现出很高的准确性,从而表明在出现新威胁时使用机器学习来提高 VANET 安全性和可靠性的潜力。通过这项研究,阐明了 ML 在保护车辆通信方面的应用对于提高交通安全和流量的重要性。
摘要 — 随着工业 4.0 的到来,数据科学和可解释人工智能 (XAI) 在最近的文献中引起了相当大的兴趣。然而,就计算机编码和必要的数学工具而言,进入 XAI 的门槛确实很高。对于钢板故障诊断,这项工作报告了一种将基于 XAI 的见解纳入数据科学开发高精度分类器过程的方法。使用合成少数过采样技术 (SMOTE) 和中心点概念,从 XAI 工具中获得见解。已经收获了 Ceteris Peribus 配置文件、部分依赖性和故障配置文件。此外,还从优化的随机森林和关联规则挖掘中提取了 IF-THEN 规则形式的见解。将所有见解整合到一个集成分类器中,已实现 94% 的 10 倍交叉验证性能。总而言之,这项工作做出了三个主要贡献,即::基于利用 medoids 和 SMOTE 的方法,收集见解并纳入模型开发过程。其次,这些见解本身就是贡献,因为它们使钢铁制造业的人类专家受益,第三,已经开发出高精度故障诊断分类器。
代码异味是指源代码中任何违反设计原则或实现的症状或异常。及早发现不良代码异味可以提高软件质量。如今,几种人工神经网络 (ANN) 模型已用于软件工程的不同主题:软件缺陷预测、软件漏洞检测和代码克隆检测。使用 ANN 模型时,无需了解数据来源,但需要大量训练集。数据不平衡是人工智能技术在检测代码异味方面面临的主要挑战。为了克服这些挑战,本研究的目标是基于一组 Java 项目,提出具有合成少数过采样技术 (SMOTE) 的深度卷积神经网络 (D-CNN) 模型来检测不良代码异味。我们考虑了四个代码异味数据集,即 God 类、数据类、特征嫉妒和长方法,并根据不同的性能指标对结果进行了比较。实验结果表明,所提出的具有过采样技术的模型可以为代码异味检测提供更好的性能,并且当使用更多数据集训练模型时,预测结果可以进一步改善。此外,更多的时期和隐藏层有助于提高模型的准确性。
摘要 为了提高学生成绩,许多大学使用机器学习来分析和评估他们的数据,从而提高大学的教育质量。为了从追踪研究数据集中获得新的见解,即大学成绩与学生在商业和行业工作能力之间的相关性,作者将使用人工神经网络 (ANN) 开发一个基于追踪研究数据集预测学生成绩的模型。为了获得与标签相对应的属性,将使用 Phi 系数相关来选择具有高相关性的属性作为特征选择。作者还使用合成少数过采样技术 (SMOTE) 执行过采样方法,因为这个数据集是不平衡的,并使用 K 折交叉验证评估模型。根据 K 折交叉验证,结果表明 K = 3 的评估分数标准差较低,是分割数据集的最佳 K 候选者。所有分数评估(准确度、精确度、召回率和 F-1 分数)的平均标准差为 0.038。将 SMOTE 应用于不平衡数据集(数据分为 65 个训练数据和 35 个测试数据)后,准确率值从 0.77 提高到 0.87,提高了 10%。关键词:人工神经网络、不平衡数据集、K 折交叉验证、学生表现、追踪研究。引言
摘要 目的 我们研究了机器学习人工智能 (AI) 在对眼科急症严重程度进行分类以便及时就诊方面的有效性。 研究设计 这项回顾性研究分析了 2019 年 5 月至 12 月期间首次访问大邱武装部队医院的患者。患者的一般信息、事件和症状是输入变量。事件、症状、诊断和治疗是输出变量。输出变量分为四类(红色、橙色、黄色和绿色,表示立即或无紧急情况)。在所有训练程序之前,随机选择了大约 200 例类平衡验证数据集。采用了一种集成 AI 模型,该模型结合了全连接神经网络和合成少数过采样技术算法。 参与者 共纳入 1681 名患者。 主要结果 使用准确度、精确度、召回率和 F1 分数来评估模型性能。 结果 该模型的准确率为 99.05%。各类别(红色、橙色、黄色和绿色)的准确率分别为 100%、98.10%、92.73% 和 100%。各类别的召回率分别为 100%、100%、98.08% 和 95.33%。各类别的 F1 得分分别为 100%、99.04%、95.33% 和 96.00%。结论我们为基于症状对眼科急诊严重程度进行分类的 AI 方法提供了支持。
摘要:中风是大脑血液供应突然中断,影响一条或多条滋养大脑的血管。这会导致大脑供氧紊乱或不足,从而导致脑细胞损伤或受损。在某些情况下,确定中风的时间和严重程度可能具有挑战性。本研究提出了一种基于人工智能的 EMS(ElasticNet - MLP - SMOTE)模型,具体利用两种机器学习算法,即 Elastic Net 和多层感知器 (MLP),并使用合成少数过采样技术 (SMOTE)。Elastic Net 算法用于特征选择以识别关键特征,然后使用 MLP 算法进行预测。使用 Elastic Net 算法是因为它结合了 L 2 和 L 1 正则化,在辨别影响模型性能的特征方面提供了良好的结果。使用 MLP 算法是因为它依赖于深度学习技术,在这种情况下产生了有希望的结果。该算法从包含与中风相关的基本特征的综合数据集中对数据进行分类。SMOTE 用于提高模型的性能。值得注意的是,之前没有研究将这三种技术(Elastic Net – MLP – SMOTE)结合在一起。EMS 的预测准确率达到 95%,MSE = 0.05。该模型有助于根据患者的历史数据预测中风的发生,从而缓解这种严重疾病的突然发作。
太阳高能粒子 (SEP) 是空间天气中最危险的事件之一。在过去的几十年中,已经开发出多种技术来预测 SEP 的发生,主要基于 > 10 MeV 质子通量与某些前兆(例如太阳耀斑、日冕物质抛射等)之间的统计关联。在本文中,我们重点关注太阳质子事件实时警报 (ESPERTA) 的经验模型,该模型通过考虑三个输入参数来预测≥ M2 太阳耀斑发生后的 SEP 事件:耀斑源区经度、软 X 射线通量和 ∼ 1 MHz 的射电通量。在这里,我们在监督学习框架中重塑了 ESPERTA 模型,并对预测模型进行了交叉验证,同时应用了罕见事件校正(即数据过采样和损失函数加权),因为 SEP 发生的高度不平衡性。使用合成少数过采样技术可获得最佳性能,检测概率为 0.83,误报率 (FAR) 为 0.39。尽管如此,与不平衡情况相比,验证分数的改善很小。SEP 预测的相关 FAR 是样本基准率的自然结果。综上所述,我们给出的证据表明,预测 SEP 事件的统计方法应考虑以下因素:1) 需要根据 SEP 事件的预期发生情况校准模型,2) 决策阈值对模型性能有很强的影响,3) 模型中使用的特征,如果单独考虑,无法完全区分参数空间中的事件类别,因此使用处理不平衡问题的技术并不能保证更好的性能。
太阳高能粒子 (SEP) 是空间天气中最危险的事件之一。在过去的几十年中,人们开发了各种各样的技术来预测 SEP 的发生,这些技术主要基于 > 10 MeV 质子通量与某些前兆(例如太阳耀斑、日冕物质抛射等)之间的统计关联。在本文中,我们将重点介绍太阳质子事件实时警报 (ESPERTA) 的经验模型,该模型通过考虑三个输入参数来预测≥ M2 太阳耀斑发生后的 SEP 事件:耀斑源区经度、软 X 射线通量和 ∼ 1 MHz 的射电通量。在这里,我们在监督学习框架中重塑了 ESPERTA 模型,并对预测模型进行了交叉验证,同时还应用了罕见事件校正(即数据过采样和损失函数加权),因为 SEP 的发生具有高度不平衡性。使用合成少数过采样技术可获得最佳性能,检测概率为 0.83,误报率 (FAR) 为 0.39。尽管如此,与不平衡情况相比,验证分数的改善很小。SEP 预测的相关 FAR 是样本基率的自然结果。总之,我们给出的证据表明,预测 SEP 事件的统计方法应考虑以下因素:1) 需要根据 SEP 事件的预期发生情况校准模型,2) 决策阈值强烈影响模型性能,3) 模型中使用的特征,如果单独考虑,则无法完全分离参数空间中的事件类别,因此使用处理不平衡问题的技术并不能保证更好的性能。