Loading...
机构名称:
¥ 1.0

摘要 为了提高学生成绩,许多大学使用机器学习来分析和评估他们的数据,从而提高大学的教育质量。为了从追踪研究数据集中获得新的见解,即大学成绩与学生在商业和行业工作能力之间的相关性,作者将使用人工神经网络 (ANN) 开发一个基于追踪研究数据集预测学生成绩的模型。为了获得与标签相对应的属性,将使用 Phi 系数相关来选择具有高相关性的属性作为特征选择。作者还使用合成少数过采样技术 (SMOTE) 执行过采样方法,因为这个数据集是不平衡的,并使用 K 折交叉验证评估模型。根据 K 折交叉验证,结果表明 K = 3 的评估分数标准差较低,是分割数据集的最佳 K 候选者。所有分数评估(准确度、精确度、召回率和 F-1 分数)的平均标准差为 0.038。将 SMOTE 应用于不平衡数据集(数据分为 65 个训练数据和 35 个测试数据)后,准确率值从 0.77 提高到 0.87,提高了 10%。关键词:人工神经网络、不平衡数据集、K 折交叉验证、学生表现、追踪研究。引言

基于追踪研究的大学生成绩预测

基于追踪研究的大学生成绩预测PDF文件第1页

基于追踪研究的大学生成绩预测PDF文件第2页

基于追踪研究的大学生成绩预测PDF文件第3页

基于追踪研究的大学生成绩预测PDF文件第4页

基于追踪研究的大学生成绩预测PDF文件第5页

相关文件推荐