1 UMR 1107插入/UCA,Chu Clermont Ferrand,Universit和Clermont Auvergne,Neurmont Ferrand,法国; sylvain.lamoine@uca.fr(S.L.); (M.C。); David.A.Barrien.com(D.A.B.); vanexs_63@glass.com(V.P.); (M.F.); laetitia.prival@uc.fr(L.P.); julie.barri@uca.fr(J.B。); funfish-fill.fr(l.b。);大卫。); youussef。); alain.eschanger@uca.fr(A.E。)2 IGRS,CNR,INSERM,FACUL和DESIGN,UNIVERSIT和CLERMONT AUVERGNE,63000 CLEMONT-FERRAND,法国; emilie.big enmity.fr(E.B.); benjamin.bertin@uca.fr(B.B.); yoan.enabled@uca.fr(y.r。)3秋天和法国63000 Clermont Ferrand的Clermont Auvergne的病人陪伴的灾难; Clermont-Ferrand,诊所和创新,63000 Clermont Ferrand,法国6镇痛研究所,Facul and Decine,BP38,63001法国Ferrand *通讯员:繁华Syromes@uca.fr;电话: +33-(0)-4-7317-8235;传真: +4-4-7327-7162
量子态断层扫描(从 𝑛 个副本中学习 𝑑 维量子态)是量子信息科学中一项普遍存在的任务。它是从 𝑛 个样本中学习 𝑑 结果概率分布的经典任务的量子类似物。更详细地说,目标是设计一种算法,给定某个(通常是混合的)量子态 𝜌 ∈ C 𝑑 × 𝑑 的 𝜌 ⊗ 𝑛,输出一个估计值 2 ̂︀ 𝜌(的经典描述),该估计值以高概率“𝜖 接近”𝜌。主要挑战是将样本(副本)复杂度 𝑛 最小化为 𝑑 和 𝜖(有时还有其他参数,例如 𝑟 = 秩 𝜌 )的函数。我们还将关注设计仅进行单次(而不是集体)测量的算法的实际问题。指定量子断层扫描任务的一个重要方面是“𝜖-close”的含义;即,判断算法估计的损失函数是什么。有很多自然的方法可以测量两个量子态的发散度——甚至比两个经典概率分布的发散度还要多——并且所选择的精确测量方法会对必要的样本复杂度以及最终估计对未来应用的效用产生很大的影响。本文的主要目标是展示一种新的断层扫描算法,该算法实现最严格的准确度概念(Bures)𝜒 2 -发散度,同时具有与以前使用不忠诚度作为损失函数的算法基本相同的样本复杂度。然后,我们给出了一个应用,即量子互信息测试问题,这关键依赖于我们实现关于𝜒 2 -发散度的有效状态断层扫描的能力。
摘要。光电子学的最新进展首次使可穿戴和高密度功能性近红外光谱 (fNIRS) 和漫反射光学断层扫描 (DOT) 技术成为可能。这些技术有可能通过在几乎任何环境和人群中以与 fMRI 相当的分辨率对人类皮层进行功能性神经成像来开辟现实世界神经科学的新领域。在这篇观点文章中,我们简要概述了可穿戴高密度 fNIRS 和 DOT 方法的历史和现状,讨论了当前面临的最大挑战,并提出了我们对这项非凡技术未来的看法。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.10.2.023513]
已发布版本的引文 (APA):Gajjar, P., Styliari, I. D., Burnett, T., Chen, X., Elliot, J.A., Ganley, W. J., Hammond, R., Nguyen, H., Price, R., Roberts, K., Withers, P., & Murnane, D. (2020).摘自气溶胶学会肺部药物输送第 30 届爱丁堡国际会议中心,英国苏格兰,2019 年 12 月 11-13 日:一种表征吸入粉末的 3D 方法。A-1-A-31.在英国爱丁堡的肺部药物输送会议上展示的海报会议。https://doi.org/10.1089/jamp.2020.ab01.abstracts 引用本文 请注意,如果 Manchester Research Explorer 上提供的全文是作者接受的手稿或校样版本,则可能与最终发布的版本不同。如果引用,建议您检查并使用出版商的最终版本。
相对于计算机断层扫描(CT),磁共振成像(MRI)的软组织对比增加使其成为决定放射治疗(RT)的合适成像方法。当将MRI扫描用于治疗计划时,剂量计算和基于X射线的患者位置仍然需要CT扫描。这增加了工作量,由于图像注册间模式的必要条件,因此导致了不必要的,并且需要不必要的辐射。即使仅使用MR图像是有利的,但必须使用一种估计伪CT(PCT)的方式来生成电子密度映射和患者参考图像。因此,本文带来了一个有效的深度学习模型,可以使用以下步骤从MRI图像中生成合成的CT; a)在收集了CT和MRI扫描图像的数据中,b)使用图像进行预处理,以避免使用诸如Outier Emplier Empliering,数据平滑和数据归一化的技术避免异常和噪声,C)使用原理组件分析(PCA)和回归方法进行特征提取和选择,DCN和DCN(DCN)(DCN)(dcn)(dcn)(dcn)(dc)。此外,我们为此模型评估了DC,SSIM,MAE和MSE等指标。但是,我们建议的模型的精度为95%。关键字
负载催化活性液态金属溶液 (SCALMS) 在烷烃脱氢方面表现出色,尤其是在抗结焦方面。SCALMS 由多孔载体组成,载体上含有催化活性低熔点合金颗粒 (如 Ga-Pd、Ga-Pt),这些颗粒在反应温度下为液态。在新成立的合作研究中心 CRC1452“液体界面催化 (CLINT)”(www.sfb1452.research.fau.eu/),佛罗里达大西洋大学的跨学科科学家小组开发了此类新型催化材料,将选择性、生产率、稳健性和易加工性完美结合。需要对这些催化剂在不同长度尺度上进行高分辨率和 3D 表征,以揭示复杂的孔隙和颗粒形貌、(晶体) 结构、化学组成和催化活性位点的位置,这对于从根本上了解催化过程是必不可少的。在 IMN(www.em.tf.fau.de),我们已经开始使用 CENEM(www.cenem.fau.de)提供的最先进的电子显微镜和纳米 CT 仪器探索 SCALMS 系统的结构特性。
1 量子比特和纠缠 2 1.1 量子比特状态的特征. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 EPR 佯谬与贝尔不等式 . . . . . . . . . . . . . 7 1.2.1 EPR 佯谬 . . . . . . . . . . . . . . . 7 1.2.2 Bell 不等式与 CHSH 不等式 . . . . . . . . . . . . 8 1.3 密度算子 . . . . .................................................................................................................................................................................................................................12 1.3.1 定义和一般特征 .................................................................................................................................................................................................12 1.3.2 密度算子的应用 .................................................................................................................................................................................................13
引言——过去几十年来量子光学[1 – 4]的进展使得量子力学的基础测试[5,6]、量子光子态的测量[7 – 9]和量子技术的实现[10 – 14]成为可能。这些成就源于光子探测方案的发展,例如汉伯里·布朗-特威斯实验[15]、符合测量[6]、光子数分辨探测器[16,17]和用于量子态层析成像[18 – 20]的同差探测[7 – 9]。传统的量子光探测器依赖于光子与固态系统(如雪崩光电二极管[21 – 23]、超导纳米线[24,25]和光电倍增管[26,27])的相互作用。其他灵敏的量子光学探测器依赖于与有效两能级系统(例如原子、囚禁离子或超导量子比特)的光子相互作用 [28 – 32]。更先进的检测方案促进了光学非线性以增加检测带宽 [33,34]。然而,当前的量子光学技术在空间分辨率方面受到限制,并且由于电子元件的响应时间而限制了检测速率和带宽。在这里,我们提出了一种使用自由电子-光子纠缠 [35 – 37] 进行量子光子态层析成像的量子光学检测方案。我们展示了同质型自由电子与光子态的相互作用(图 1)如何通过电子能谱测量在相空间中提取有关该状态的最大信息。这种方法,我们称之为自由电子量子光学检测(FEQOD),具有由电子-光子耦合强度设定的基本信息限制,允许
步骤2填料步骤3电解质填充1 CT 2 CT 2 CT 3 CT步骤1堆叠/绕组步骤4编队步骤5脱气步骤6老化步骤7 EOL测试步骤8模块组装 div>
摘要和证据分析:计算机断层扫描(CT)是一种使用X射线产生身体横截面图像的技术。ct广泛用于头部成像。ct优于磁共振成像(MRI),用于评估骨结构,急性颅内出血和钙化检测,这对于鉴定异常或对差异诊断的细化可能很重要。CT在急性创伤,非创伤性颅内出血,分流器故障的评估和选定的术后随访中都足够且诊断。ct对于某些条件,例如影响颅神经,脑实质和脑膜的肿瘤,传染性或炎症状况。与临床病史和体格检查结果结合使用,大脑的CT是一种有用的筛查工具,用于诸如急性精神状态变化,癫痫发作,急性神经系统缺陷,急性头痛和非急性头痛,并具有神经系统发现。ct可作为筛查方式,可用于肿瘤的存在和质量效应,在某些情况下添加静脉内(IV)对比度可能会增加灵敏度(ASNR-ASNR-SPR,2020年)。