研究人员使用高分辨率 Ganymede™ 系统,重点展示了视网膜新生血管 (RNV) 如何影响眼睛的结构。图 1 显示了白化兔的正常视网膜。图 2 显示了色素兔的正常视网膜。图 3 显示了患有 RNV 的白化兔。图 4 显示了患有 RNV 的色素兔。视网膜血管 (RV)、神经纤维层 (NFL) 和视网膜前纤维血管膜 (PFM) 也进行了标记。
摘要:紫外线(UV)辐射会导致90%的光损伤对皮肤,长期暴露于紫外线辐射是对皮肤健康的最大威胁。研究了紫外线引起的光损伤的机制和晒伤皮肤的修复,要解决的关键问题是如何非破坏性和连续评估对皮肤的UV诱导的光损伤。在这项研究中,提出了一种使用光学相干断层扫描(OCT)定量分析人工皮肤(AS)的结构和组织光学参数的方法,作为一种非损害和连续评估光损伤效果的一种方式。是根据OCT图像的强度信号的特征峰来实现表面粗糙度的,这是使用Dijkstra算法量化为角质层厚度的基础。通过灰级共发生矩阵法获得的本质本地纹理特征。一种经过修改的深度分辨算法用于量化基于单个散射模型的3D散射系数分布。对AS进行了光损伤的多参数评估,并将结果与MTT实验结果和H&E染色进行了比较。紫外线发生损伤实验的结果表明,与正常培养的AS相比,光损伤模型的角质层较厚(56.5%),表面粗糙度(14.4%)。角第二矩更大,相关性较小,这与H&E染色显微镜的结果一致。AS的组织散射系数与MTT结果良好相关,可用于量化生物活性的损害。角度时刻和相关性与紫外线辐射剂量有良好的线性关系,这说明了OCT在测量内部结构损伤中的潜力。实验结果还证明了维生素C因子的抗疫苗效率。对AS的结构和组织光学参数的定量分析可实现多个维度中AS的非破坏性和连续检测。
综合超声和电阻抗断层扫描用于提高肾结石检测率 KR Farnham 1、EK Murphy 1 和 RJ Halter 1,2 1 塞耶工程学院,2 盖泽尔医学院,达特茅斯学院,新罕布什尔州汉诺威 引言 长期处于微重力环境中会导致脱水、淤滞和骨质脱矿,从而引发肾结石,对宇航员的健康和幸福构成严重威胁 [1]。尽早发现肾结石的形成是有益的,因为较小的结石更容易通过,而碎石术等非侵入性治疗需要先使用高对比度成像(如荧光透视、X 射线)定位结石。超声波是目前在太空中使用的成像系统,但仅用超声波检测小结石是一项具有挑战性的任务。执行深空任务的宇航员需要能够对肾结石等疾病进行成像和治疗,而无需依赖额外的造影剂或远程医疗支持,因为航天器的限制和距离使这些解决方案不可行 [2]。通过对生物电特性进行成像可以获得明显更高的对比度,因为这些特性对细胞内容、组织类型和病理很敏感,从而可以检测软组织内的结石。电阻抗断层扫描 (EIT) 是一种资源消耗少、非侵入性、非电离的技术,可产生这些电特性的图像,并能够检测一系列与空间相关的疾病(如肾结石、组织损伤、肌肉萎缩、胸腔功能、癌症存在) [3]。通过结合超声波和 EIT(US-EIT),我们可以构建高对比度图像,而无需额外的设备或专业知识,为宇航员提供一种易于使用的工具,以便在长期任务中有效监测他们的健康状况。
量子过程断层扫描是构建量子计算机,启用量子网络并了解量子传感器的关键能力。像量子状态断层扫描一样,任意量子通道的过程层析成像需要多个测量值,这些测量值在量子位的数量中呈指数缩放。然而,应用于量子状态的影子tomog-raphy的最新领域已经证明了能够提取有关状态的关键信息的能力。在这项工作中,我们将影子状态断层扫描的概念应用于表征量子过程的挑战。我们利用Choi同构直接将严格的界限从阴影状态层析成像到阴影过程断层扫描中,并且在过程断层扫描中独有的测量数量上找到了其他界限。我们的结果,包括用于实现阴影过程刻度的算法,启用新技术,包括评估通道串联以及将通道应用于量子状态的阴影。这为理解大规模量子系统提供了巨大的改进。
抽象背景/旨在应用深度学习技术来开发人工智能(AI)系统,该系统可以根据光学相干断层扫描(OCT)黄斑图像来识别高近视患者的威胁性疾病。在这项横截面前瞻性研究中,从2012年至2017年开始,从1048名高山眼科中心(ZOC)获得的1048名近视患者获得了5505个合格的OCT黄斑图像,以开发AI系统。独立测试数据集包括从2019年1月至2019年5月在ZOC招募的91名近视患者获得的412张图像。我们采用了InceptionResnETV2体系结构来训练四个独立的卷积神经网络(CNN)模型,以识别高近视的以下四种威胁性的危及危险状况:视网膜菌,黄斑孔,视网膜脱离和病理肌反应型脉络膜脉络膜化。焦点损失用于解决类不平衡,并根据Youden指数确定最佳的操作阈值。在独立的测试数据集中结果,在所有条件下,接收器操作特征曲线下的区域均高(0.961至0.999)。我们的AI系统的敏感性等于甚至比视网膜专家的敏感性以及高特异性(大于90%)。此外,我们的AI系统为热图提供了透明且可解释的诊断。结论我们使用OCT黄斑图像来开发CNN模型来识别高近视患者的视力威胁性疾病。我们的模型具有可靠的敏感性和高特异性,可与视网膜专家相当,并且可以用于大规模的近视筛查和患者随访。
摘要:一个名为plexciton的准粒子来自等离子体和分子激子之间的杂交,这些杂交在灭绝,散射和反射光谱方面表现出特征的光谱特征,例如Fano共振和RABI分裂。然而,对丛杂种中荧光特性的理解尚不清楚,尤其是对于非线性上将的排放。在这封信中,我们准备了三个组成的丛杂种杂交体,该杂种与两种氰胺染料(CY3和CY5)耦合到AG纳米结构膜并研究了它们增强的非线性辐射,包括两光子发光(TPL),第二谐波(TPL),第二谐波生成(SHG)(SHG)和表面增强的Raman Raman Raman散射(Sersserssers)。丛杂种显示出分裂的灭绝频谱,其中五个峰与二聚体染料的杂种诱导的五峰,并带有Ag膜的表面等离子体共振。在1260 nm的激光激发下,(Cy3-cy5)/ag混合动力车的TPL增强了6.3倍,与Cy5/ag的两种组件混合体相比,SHG的增强率为5.1倍。我们的实验结果为设计和制造具有高效的非线性辐射设计和制造多组分丛设备提供了宝贵的见解。丛杂种,其特征在于其特征灭绝的特性和很大程度上增强的上流发射,对非线性光学,量子信息处理,生物医学感应和光化学的应用有很大的希望。关键字:等离子体,分子激子,多组分,两光子发光,第二谐波产生,表面增强的拉曼散射
图 2 | 运动任务的 fPACT 和 7 T fMRI 结果。对右侧 FT(a:fMRI,b:左半球无颅骨 fPACT)、左侧 FT(c:fMRI,d:右半球颅骨完整 fPACT)和 TT(e:fMRI — 左图显示大脑左侧,f:左半球无颅骨 fPACT,g:fMRI — 左图显示大脑右侧,h:右半球颅骨完整 fPACT)的功能反应进行了成像。皮质上显示的功能反应(左栏)代表反应的最大振幅投影。功能反应也显示在通过激活的轴向(中间栏)和冠状(右栏)切片上。对于 FT(ad),我们选择相同的轴向和冠状切片显示在所有四张图像中。对于左侧无颅骨侧的 TT(e、f),我们选择彼此相距 5 毫米以内的切片。对于右侧颅骨完整侧的 TT(g、h),我们选择相同的轴向和冠状切片。但这些激活在空间上并不重叠。在每个功能图中,我们显示了以最大 t 值(𝑡𝑚𝑎𝑥)的 70% 为阈值的区域,这些区域列为每个皮质图下方的第一个值。皮质图下方显示了对应于最大 t 值的 70% 的 p 值(一元学生 t 检验)。白色箭头表示 fPACT 中的激活区域。比例尺:2 厘米。
层析成像是分析内部成分排列的一种方法。医学可能是利用这种方法并推动其发展的最著名学科。[1–3] 然而,层析成像也已应用于其他研究领域,如材料科学[4,5]、生物学[6]、考古学[7]甚至流体动力学[8],并且在工业领域也越来越受到认可,例如用于质量控制[9]或无损检测[10]。图像采集与实时重建算法[11]、高级图像分析[12]、特征分割和识别分析算法[13,14]与现代机器学习工具[15,16]的结合增强了这种方法的潜力。如今,实验室扫描仪普及且功能强大,受益于改进的空间和时间分辨率,尽管尖端实验仍然局限于高亮度同步加速器和X射线自由电子激光器。可以在极短的时间内获得高空间分辨率。[17,18] 对高空间和时间分辨率、大视野和高总记录时间的需求意味着目标的冲突。文献中概述了不同设备可用的实际速度和分辨率。[19–21]
背景:计算机断层扫描 (CT) 仍然是创伤性脑损伤 (TBI) 成像评估的金标准。TBI 本身因其不良影响已成为发展中国家的主要问题。目的:目的是评估患有 TBI 的患者的颅脑计算机断层扫描图像。材料和方法:对 2013 年 11 月 13 日至 2019 年 5 月 31 日期间在尼日利亚乌约大学教学医院因头部受伤而接受颅脑 CT 检查的患者进行了回顾性研究。持续时间与服务中断的不连贯时间无关。应用简单的数据分析评估了患者的人口统计学和 CT 特征。结果:评估了 232 名患者,最小年龄为 6 个月,最大年龄为 78 岁。男性患者占多数,比例为 2.74:1。受影响最大的年龄段为 30-39 岁(23.27%)和 20-29 岁(22.84%)。44 名患者(18.97%)的脑 CT 正常。CT 异常患者中最常见的病变是颅内出血(n = 188,81.03%)。其中,脑外出血(n = 100,53.19%)超过脑内出血(n = 88,46.81%)。一半的脑内出血是多发性的。34.48%(n = 80)的患者出现颅骨骨折。最常见的部位是面骨(n = 24,30.00%),而最少见的部位是枕骨(n = 4,5.00%)。15% 的患者有多处骨折,其中还包括颅底。结论:TBI 在年轻活跃男性中很常见。最常见的病变是伴有外轴偏向的颅内出血。
该实验可让您深入了解X射线的基本属性,它们与物质的产生和相互作用以及在计算机断层扫描中使用X射线。这种非破坏性成像方法中的基本原理是X射线的材料依赖性衰减,从理想的点(如X射线源)所用的X射线源用于吸收吸收率的传播图像,用于大量不同的视角,并计算物体中材料的三维分布。在本实验中,X射线管中Bremsstrahung的结构以及辐射强度对阳极电压和电流的依赖性进行了实验检查。将重新种族与基于克莱默的规则进行比较。使用不同材料的楔子,检查了兰伯特 - 伯尔定律,该定律可预测和指示X射线强度随传输路径的长度而降低。另外,在实验结束时,您有可能扫描您选择的合适对象并创建三维层析成像图像。